Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcc Structured version   Visualization version   GIF version

Theorem smfpimcc 46845
Description: Given a countable set of sigma-measurable functions, and a Borel set 𝐴 there exists a choice function that, for each measurable function, chooses a measurable set that, when intersected with the function's domain, gives the preimage of 𝐴. This is a generalization of the observation at the beginning of the proof of Proposition 121F of [Fremlin1] p. 39 . The statement would also be provable for uncountable sets, but in most cases it will suffice to consider the countable case, and only the axiom of countable choice will be needed. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcc.1 𝑛𝐹
smfpimcc.z 𝑍 = (ℤ𝑀)
smfpimcc.s (𝜑𝑆 ∈ SAlg)
smfpimcc.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfpimcc.j 𝐽 = (topGen‘ran (,))
smfpimcc.b 𝐵 = (SalGen‘𝐽)
smfpimcc.a (𝜑𝐴𝐵)
Assertion
Ref Expression
smfpimcc (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,,𝑛   ,𝐹   𝑆,   ,𝑍,𝑛
Allowed substitution hints:   𝜑(,𝑛)   𝐵(,𝑛)   𝑆(𝑛)   𝐹(𝑛)   𝐽(,𝑛)   𝑀(,𝑛)

Proof of Theorem smfpimcc
Dummy variables 𝑓 𝑚 𝑠 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfpimcc.z . . . . . . 7 𝑍 = (ℤ𝑀)
21uzct 45099 . . . . . 6 𝑍 ≼ ω
32a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
4 mptct 10426 . . . . 5 (𝑍 ≼ ω → (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ≼ ω)
5 rnct 10413 . . . . 5 ((𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ≼ ω → ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ≼ ω)
63, 4, 53syl 18 . . . 4 (𝜑 → ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ≼ ω)
7 vex 3440 . . . . . . . 8 𝑦 ∈ V
8 eqid 2731 . . . . . . . . 9 (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) = (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
98elrnmpt 5898 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ↔ ∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}))
107, 9ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) ↔ ∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
1110biimpi 216 . . . . . 6 (𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) → ∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
1211adantl 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) → ∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
13 simp3 1138 . . . . . . . . 9 ((𝜑𝑚𝑍𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
14 smfpimcc.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
1514adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
16 smfpimcc.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1716ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
18 eqid 2731 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
19 smfpimcc.j . . . . . . . . . . . . 13 𝐽 = (topGen‘ran (,))
20 smfpimcc.b . . . . . . . . . . . . 13 𝐵 = (SalGen‘𝐽)
21 smfpimcc.a . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝐴𝐵)
23 eqid 2731 . . . . . . . . . . . . 13 ((𝐹𝑚) “ 𝐴) = ((𝐹𝑚) “ 𝐴)
2415, 17, 18, 19, 20, 22, 23smfpimbor1 46837 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → ((𝐹𝑚) “ 𝐴) ∈ (𝑆t dom (𝐹𝑚)))
25 fvex 6835 . . . . . . . . . . . . . . . 16 (𝐹𝑚) ∈ V
2625dmex 7839 . . . . . . . . . . . . . . 15 dom (𝐹𝑚) ∈ V
2726a1i 11 . . . . . . . . . . . . . 14 (𝜑 → dom (𝐹𝑚) ∈ V)
28 elrest 17328 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ dom (𝐹𝑚) ∈ V) → (((𝐹𝑚) “ 𝐴) ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))))
2914, 27, 28syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (((𝐹𝑚) “ 𝐴) ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))))
3029adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (((𝐹𝑚) “ 𝐴) ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))))
3124, 30mpbid 232 . . . . . . . . . . 11 ((𝜑𝑚𝑍) → ∃𝑠𝑆 ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚)))
32 rabn0 4339 . . . . . . . . . . 11 ({𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅ ↔ ∃𝑠𝑆 ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚)))
3331, 32sylibr 234 . . . . . . . . . 10 ((𝜑𝑚𝑍) → {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
34333adant3 1132 . . . . . . . . 9 ((𝜑𝑚𝑍𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) → {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
3513, 34eqnetrd 2995 . . . . . . . 8 ((𝜑𝑚𝑍𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 ≠ ∅)
36353exp 1119 . . . . . . 7 (𝜑 → (𝑚𝑍 → (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅)))
3736rexlimdv 3131 . . . . . 6 (𝜑 → (∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
3837adantr 480 . . . . 5 ((𝜑𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) → (∃𝑚𝑍 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
3912, 38mpd 15 . . . 4 ((𝜑𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) → 𝑦 ≠ ∅)
406, 39axccd2 45266 . . 3 (𝜑 → ∃𝑓𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦)
41 nfv 1915 . . . . . . 7 𝑚𝜑
42 nfmpt1 5190 . . . . . . . . 9 𝑚(𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
4342nfrn 5892 . . . . . . . 8 𝑚ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})
44 nfv 1915 . . . . . . . 8 𝑚(𝑓𝑦) ∈ 𝑦
4543, 44nfralw 3279 . . . . . . 7 𝑚𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦
4641, 45nfan 1900 . . . . . 6 𝑚(𝜑 ∧ ∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦)
471fvexi 6836 . . . . . 6 𝑍 ∈ V
4814adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
49 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
50 id 22 . . . . . . . . 9 (𝑦 = 𝑤𝑦 = 𝑤)
5149, 50eleq12d 2825 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑓𝑦) ∈ 𝑦 ↔ (𝑓𝑤) ∈ 𝑤))
5251rspccva 3576 . . . . . . 7 ((∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦𝑤 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) → (𝑓𝑤) ∈ 𝑤)
5352adantll 714 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦) ∧ 𝑤 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) → (𝑓𝑤) ∈ 𝑤)
54 eqid 2731 . . . . . 6 (𝑚𝑍 ↦ (𝑓‘{𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})) = (𝑚𝑍 ↦ (𝑓‘{𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))}))
5546, 47, 48, 53, 54smfpimcclem 46844 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦) → ∃(:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚))))
5655ex 412 . . . 4 (𝜑 → (∀𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦 → ∃(:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚)))))
5756exlimdv 1934 . . 3 (𝜑 → (∃𝑓𝑦 ∈ ran (𝑚𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑚) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑚))})(𝑓𝑦) ∈ 𝑦 → ∃(:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚)))))
5840, 57mpd 15 . 2 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚))))
59 smfpimcc.1 . . . . . . . . 9 𝑛𝐹
60 nfcv 2894 . . . . . . . . 9 𝑛𝑚
6159, 60nffv 6832 . . . . . . . 8 𝑛(𝐹𝑚)
6261nfcnv 5818 . . . . . . 7 𝑛(𝐹𝑚)
63 nfcv 2894 . . . . . . 7 𝑛𝐴
6462, 63nfima 6017 . . . . . 6 𝑛((𝐹𝑚) “ 𝐴)
65 nfcv 2894 . . . . . . 7 𝑛(𝑚)
6661nfdm 5891 . . . . . . 7 𝑛dom (𝐹𝑚)
6765, 66nfin 4174 . . . . . 6 𝑛((𝑚) ∩ dom (𝐹𝑚))
6864, 67nfeq 2908 . . . . 5 𝑛((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚))
69 nfv 1915 . . . . 5 𝑚((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))
70 fveq2 6822 . . . . . . . 8 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
7170cnveqd 5815 . . . . . . 7 (𝑚 = 𝑛(𝐹𝑚) = (𝐹𝑛))
7271imaeq1d 6008 . . . . . 6 (𝑚 = 𝑛 → ((𝐹𝑚) “ 𝐴) = ((𝐹𝑛) “ 𝐴))
73 fveq2 6822 . . . . . . 7 (𝑚 = 𝑛 → (𝑚) = (𝑛))
7470dmeqd 5845 . . . . . . 7 (𝑚 = 𝑛 → dom (𝐹𝑚) = dom (𝐹𝑛))
7573, 74ineq12d 4171 . . . . . 6 (𝑚 = 𝑛 → ((𝑚) ∩ dom (𝐹𝑚)) = ((𝑛) ∩ dom (𝐹𝑛)))
7672, 75eqeq12d 2747 . . . . 5 (𝑚 = 𝑛 → (((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
7768, 69, 76cbvralw 3274 . . . 4 (∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)))
7877anbi2i 623 . . 3 ((:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚))) ↔ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
7978exbii 1849 . 2 (∃(:𝑍𝑆 ∧ ∀𝑚𝑍 ((𝐹𝑚) “ 𝐴) = ((𝑚) ∩ dom (𝐹𝑚))) ↔ ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
8058, 79sylib 218 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3901  c0 4283   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  cdom 8867  cuz 12729  (,)cioo 13242  t crest 17321  topGenctg 17338  SAlgcsalg 46345  SalGencsalgen 46349  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-fl 13693  df-rest 17323  df-topgen 17344  df-top 22807  df-bases 22859  df-salg 46346  df-salgen 46350  df-smblfn 46733
This theorem is referenced by:  smfsuplem2  46849
  Copyright terms: Public domain W3C validator