Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsermpt Structured version   Visualization version   GIF version

Theorem fsumsermpt 43120
Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsumsermpt.m (𝜑𝑀 ∈ ℤ)
fsumsermpt.z 𝑍 = (ℤ𝑀)
fsumsermpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsumsermpt.f 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
fsumsermpt.g 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
Assertion
Ref Expression
fsumsermpt (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘)   𝐹(𝑘,𝑛)   𝐺(𝑘,𝑛)

Proof of Theorem fsumsermpt
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13693 . . . . . 6 (𝜑 → (𝑀...𝑚) ∈ Fin)
2 simpl 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝜑)
3 elfzuz 13252 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
4 fsumsermpt.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2850 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
65adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝑘𝑍)
7 fsumsermpt.a . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
82, 6, 7syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝐴 ∈ ℂ)
91, 8fsumcl 15445 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
109adantr 481 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
1110ralrimiva 3103 . . 3 (𝜑 → ∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
12 fsumsermpt.f . . . . 5 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
13 oveq2 7283 . . . . . . 7 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
1413sumeq1d 15413 . . . . . 6 (𝑛 = 𝑚 → Σ𝑘 ∈ (𝑀...𝑛)𝐴 = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1514cbvmptv 5187 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1612, 15eqtri 2766 . . . 4 𝐹 = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1716fnmpt 6573 . . 3 (∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ → 𝐹 Fn 𝑍)
1811, 17syl 17 . 2 (𝜑𝐹 Fn 𝑍)
19 fsumsermpt.m . . . . 5 (𝜑𝑀 ∈ ℤ)
20 simpr 485 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
21 nfv 1917 . . . . . . . . 9 𝑘(𝜑𝑗𝑍)
22 nfcv 2907 . . . . . . . . . . 11 𝑘𝑗
2322nfcsb1 3856 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴
2423nfel1 2923 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
2521, 24nfim 1899 . . . . . . . 8 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
26 eleq1w 2821 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2726anbi2d 629 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
28 csbeq1a 3846 . . . . . . . . . 10 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
2928eleq1d 2823 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
3027, 29imbi12d 345 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
3125, 30, 7chvarfv 2233 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
32 eqid 2738 . . . . . . . 8 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
3322, 23, 28, 32fvmptf 6896 . . . . . . 7 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3420, 31, 33syl2anc 584 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3534, 31eqeltrd 2839 . . . . 5 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
36 addcl 10953 . . . . . 6 ((𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑗 + 𝑥) ∈ ℂ)
3736adantl 482 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑗 + 𝑥) ∈ ℂ)
384, 19, 35, 37seqf 13744 . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)):𝑍⟶ℂ)
3938ffnd 6601 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍)
40 fsumsermpt.g . . . . 5 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
4140a1i 11 . . . 4 (𝜑𝐺 = seq𝑀( + , (𝑘𝑍𝐴)))
4241fneq1d 6526 . . 3 (𝜑 → (𝐺 Fn 𝑍 ↔ seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍))
4339, 42mpbird 256 . 2 (𝜑𝐺 Fn 𝑍)
44 simpr 485 . . . . 5 ((𝜑𝑚𝑍) → 𝑚𝑍)
4516fvmpt2 6886 . . . . 5 ((𝑚𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
4644, 10, 45syl2anc 584 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
47 nfcv 2907 . . . . . 6 𝑗(𝑀...𝑚)
48 nfcv 2907 . . . . . 6 𝑘(𝑀...𝑚)
49 nfcv 2907 . . . . . 6 𝑗𝐴
5028, 47, 48, 49, 23cbvsum 15407 . . . . 5 Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴
5150a1i 11 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
5246, 51eqtrd 2778 . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
53 simpl 483 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝜑)
54 elfzuz 13252 . . . . . . . 8 (𝑗 ∈ (𝑀...𝑚) → 𝑗 ∈ (ℤ𝑀))
5554, 4eleqtrrdi 2850 . . . . . . 7 (𝑗 ∈ (𝑀...𝑚) → 𝑗𝑍)
5655adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗𝑍)
5753, 56, 34syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
5857adantlr 712 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
59 id 22 . . . . . 6 (𝑚𝑍𝑚𝑍)
6059, 4eleqtrdi 2849 . . . . 5 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
6160adantl 482 . . . 4 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
6253, 56, 31syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6362adantlr 712 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6458, 61, 63fsumser 15442 . . 3 ((𝜑𝑚𝑍) → Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚))
6540fveq1i 6775 . . . . 5 (𝐺𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚)
6665eqcomi 2747 . . . 4 (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚)
6766a1i 11 . . 3 ((𝜑𝑚𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚))
6852, 64, 673eqtrd 2782 . 2 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
6918, 43, 68eqfnfvd 6912 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  csb 3832  cmpt 5157   Fn wfn 6428  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  ovolval2lem  44181
  Copyright terms: Public domain W3C validator