Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsermpt Structured version   Visualization version   GIF version

Theorem fsumsermpt 43810
Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsumsermpt.m (𝜑𝑀 ∈ ℤ)
fsumsermpt.z 𝑍 = (ℤ𝑀)
fsumsermpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsumsermpt.f 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
fsumsermpt.g 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
Assertion
Ref Expression
fsumsermpt (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘)   𝐹(𝑘,𝑛)   𝐺(𝑘,𝑛)

Proof of Theorem fsumsermpt
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13878 . . . . . 6 (𝜑 → (𝑀...𝑚) ∈ Fin)
2 simpl 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝜑)
3 elfzuz 13437 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
4 fsumsermpt.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2849 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
65adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝑘𝑍)
7 fsumsermpt.a . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
82, 6, 7syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝐴 ∈ ℂ)
91, 8fsumcl 15618 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
109adantr 481 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
1110ralrimiva 3143 . . 3 (𝜑 → ∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
12 fsumsermpt.f . . . . 5 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
13 oveq2 7365 . . . . . . 7 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
1413sumeq1d 15586 . . . . . 6 (𝑛 = 𝑚 → Σ𝑘 ∈ (𝑀...𝑛)𝐴 = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1514cbvmptv 5218 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1612, 15eqtri 2764 . . . 4 𝐹 = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1716fnmpt 6641 . . 3 (∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ → 𝐹 Fn 𝑍)
1811, 17syl 17 . 2 (𝜑𝐹 Fn 𝑍)
19 fsumsermpt.m . . . . 5 (𝜑𝑀 ∈ ℤ)
20 simpr 485 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
21 nfv 1917 . . . . . . . . 9 𝑘(𝜑𝑗𝑍)
22 nfcv 2907 . . . . . . . . . . 11 𝑘𝑗
2322nfcsb1 3879 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴
2423nfel1 2923 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
2521, 24nfim 1899 . . . . . . . 8 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
26 eleq1w 2820 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2726anbi2d 629 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
28 csbeq1a 3869 . . . . . . . . . 10 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
2928eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
3027, 29imbi12d 344 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
3125, 30, 7chvarfv 2233 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
32 eqid 2736 . . . . . . . 8 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
3322, 23, 28, 32fvmptf 6969 . . . . . . 7 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3420, 31, 33syl2anc 584 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3534, 31eqeltrd 2838 . . . . 5 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
36 addcl 11133 . . . . . 6 ((𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑗 + 𝑥) ∈ ℂ)
3736adantl 482 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑗 + 𝑥) ∈ ℂ)
384, 19, 35, 37seqf 13929 . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)):𝑍⟶ℂ)
3938ffnd 6669 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍)
40 fsumsermpt.g . . . . 5 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
4140a1i 11 . . . 4 (𝜑𝐺 = seq𝑀( + , (𝑘𝑍𝐴)))
4241fneq1d 6595 . . 3 (𝜑 → (𝐺 Fn 𝑍 ↔ seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍))
4339, 42mpbird 256 . 2 (𝜑𝐺 Fn 𝑍)
44 simpr 485 . . . . 5 ((𝜑𝑚𝑍) → 𝑚𝑍)
4516fvmpt2 6959 . . . . 5 ((𝑚𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
4644, 10, 45syl2anc 584 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
47 nfcv 2907 . . . . . 6 𝑗(𝑀...𝑚)
48 nfcv 2907 . . . . . 6 𝑘(𝑀...𝑚)
49 nfcv 2907 . . . . . 6 𝑗𝐴
5028, 47, 48, 49, 23cbvsum 15580 . . . . 5 Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴
5150a1i 11 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
5246, 51eqtrd 2776 . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
53 simpl 483 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝜑)
54 elfzuz 13437 . . . . . . . 8 (𝑗 ∈ (𝑀...𝑚) → 𝑗 ∈ (ℤ𝑀))
5554, 4eleqtrrdi 2849 . . . . . . 7 (𝑗 ∈ (𝑀...𝑚) → 𝑗𝑍)
5655adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗𝑍)
5753, 56, 34syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
5857adantlr 713 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
59 id 22 . . . . . 6 (𝑚𝑍𝑚𝑍)
6059, 4eleqtrdi 2848 . . . . 5 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
6160adantl 482 . . . 4 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
6253, 56, 31syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6362adantlr 713 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6458, 61, 63fsumser 15615 . . 3 ((𝜑𝑚𝑍) → Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚))
6540fveq1i 6843 . . . . 5 (𝐺𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚)
6665eqcomi 2745 . . . 4 (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚)
6766a1i 11 . . 3 ((𝜑𝑚𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚))
6852, 64, 673eqtrd 2780 . 2 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
6918, 43, 68eqfnfvd 6985 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  csb 3855  cmpt 5188   Fn wfn 6491  cfv 6496  (class class class)co 7357  cc 11049   + caddc 11054  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  ovolval2lem  44874
  Copyright terms: Public domain W3C validator