Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsermpt Structured version   Visualization version   GIF version

Theorem fsumsermpt 41423
Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsumsermpt.m (𝜑𝑀 ∈ ℤ)
fsumsermpt.z 𝑍 = (ℤ𝑀)
fsumsermpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsumsermpt.f 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
fsumsermpt.g 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
Assertion
Ref Expression
fsumsermpt (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘)   𝐹(𝑘,𝑛)   𝐺(𝑘,𝑛)

Proof of Theorem fsumsermpt
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13195 . . . . . 6 (𝜑 → (𝑀...𝑚) ∈ Fin)
2 simpl 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝜑)
3 elfzuz 12758 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
4 fsumsermpt.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
53, 4syl6eleqr 2896 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
65adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝑘𝑍)
7 fsumsermpt.a . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
82, 6, 7syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝐴 ∈ ℂ)
91, 8fsumcl 14927 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
109adantr 481 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
1110ralrimiva 3151 . . 3 (𝜑 → ∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
12 fsumsermpt.f . . . . 5 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
13 oveq2 7031 . . . . . . 7 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
1413sumeq1d 14895 . . . . . 6 (𝑛 = 𝑚 → Σ𝑘 ∈ (𝑀...𝑛)𝐴 = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1514cbvmptv 5068 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1612, 15eqtri 2821 . . . 4 𝐹 = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1716fnmpt 6363 . . 3 (∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ → 𝐹 Fn 𝑍)
1811, 17syl 17 . 2 (𝜑𝐹 Fn 𝑍)
19 fsumsermpt.m . . . . 5 (𝜑𝑀 ∈ ℤ)
20 simpr 485 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
21 nfv 1896 . . . . . . . . 9 𝑘(𝜑𝑗𝑍)
22 nfcv 2951 . . . . . . . . . . 11 𝑘𝑗
2322nfcsb1 3838 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴
2423nfel1 2965 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
2521, 24nfim 1882 . . . . . . . 8 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
26 eleq1w 2867 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2726anbi2d 628 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
28 csbeq1a 3830 . . . . . . . . . 10 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
2928eleq1d 2869 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
3027, 29imbi12d 346 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
3125, 30, 7chvar 2371 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
32 eqid 2797 . . . . . . . 8 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
3322, 23, 28, 32fvmptf 6662 . . . . . . 7 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3420, 31, 33syl2anc 584 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3534, 31eqeltrd 2885 . . . . 5 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
36 addcl 10472 . . . . . 6 ((𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑗 + 𝑥) ∈ ℂ)
3736adantl 482 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑗 + 𝑥) ∈ ℂ)
384, 19, 35, 37seqf 13245 . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)):𝑍⟶ℂ)
3938ffnd 6390 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍)
40 fsumsermpt.g . . . . 5 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
4140a1i 11 . . . 4 (𝜑𝐺 = seq𝑀( + , (𝑘𝑍𝐴)))
4241fneq1d 6323 . . 3 (𝜑 → (𝐺 Fn 𝑍 ↔ seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍))
4339, 42mpbird 258 . 2 (𝜑𝐺 Fn 𝑍)
44 simpr 485 . . . . 5 ((𝜑𝑚𝑍) → 𝑚𝑍)
4516fvmpt2 6652 . . . . 5 ((𝑚𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
4644, 10, 45syl2anc 584 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
47 nfcv 2951 . . . . . 6 𝑗(𝑀...𝑚)
48 nfcv 2951 . . . . . 6 𝑘(𝑀...𝑚)
49 nfcv 2951 . . . . . 6 𝑗𝐴
5028, 47, 48, 49, 23cbvsum 14889 . . . . 5 Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴
5150a1i 11 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
5246, 51eqtrd 2833 . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
53 simpl 483 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝜑)
54 elfzuz 12758 . . . . . . . 8 (𝑗 ∈ (𝑀...𝑚) → 𝑗 ∈ (ℤ𝑀))
5554, 4syl6eleqr 2896 . . . . . . 7 (𝑗 ∈ (𝑀...𝑚) → 𝑗𝑍)
5655adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗𝑍)
5753, 56, 34syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
5857adantlr 711 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
59 id 22 . . . . . 6 (𝑚𝑍𝑚𝑍)
6059, 4syl6eleq 2895 . . . . 5 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
6160adantl 482 . . . 4 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
6253, 56, 31syl2anc 584 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6362adantlr 711 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6458, 61, 63fsumser 14924 . . 3 ((𝜑𝑚𝑍) → Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚))
6540fveq1i 6546 . . . . 5 (𝐺𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚)
6665eqcomi 2806 . . . 4 (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚)
6766a1i 11 . . 3 ((𝜑𝑚𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚))
6852, 64, 673eqtrd 2837 . 2 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
6918, 43, 68eqfnfvd 6677 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wral 3107  csb 3817  cmpt 5047   Fn wfn 6227  cfv 6232  (class class class)co 7023  cc 10388   + caddc 10393  cz 11835  cuz 12097  ...cfz 12746  seqcseq 13223  Σcsu 14880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881
This theorem is referenced by:  ovolval2lem  42489
  Copyright terms: Public domain W3C validator