Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsermpt Structured version   Visualization version   GIF version

Theorem fsumsermpt 42264
 Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsumsermpt.m (𝜑𝑀 ∈ ℤ)
fsumsermpt.z 𝑍 = (ℤ𝑀)
fsumsermpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsumsermpt.f 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
fsumsermpt.g 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
Assertion
Ref Expression
fsumsermpt (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘)   𝐹(𝑘,𝑛)   𝐺(𝑘,𝑛)

Proof of Theorem fsumsermpt
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13339 . . . . . 6 (𝜑 → (𝑀...𝑚) ∈ Fin)
2 simpl 486 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝜑)
3 elfzuz 12901 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
4 fsumsermpt.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2901 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
65adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝑘𝑍)
7 fsumsermpt.a . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
82, 6, 7syl2anc 587 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝐴 ∈ ℂ)
91, 8fsumcl 15085 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
109adantr 484 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
1110ralrimiva 3149 . . 3 (𝜑 → ∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
12 fsumsermpt.f . . . . 5 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
13 oveq2 7144 . . . . . . 7 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
1413sumeq1d 15053 . . . . . 6 (𝑛 = 𝑚 → Σ𝑘 ∈ (𝑀...𝑛)𝐴 = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1514cbvmptv 5134 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1612, 15eqtri 2821 . . . 4 𝐹 = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1716fnmpt 6461 . . 3 (∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ → 𝐹 Fn 𝑍)
1811, 17syl 17 . 2 (𝜑𝐹 Fn 𝑍)
19 fsumsermpt.m . . . . 5 (𝜑𝑀 ∈ ℤ)
20 simpr 488 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
21 nfv 1915 . . . . . . . . 9 𝑘(𝜑𝑗𝑍)
22 nfcv 2955 . . . . . . . . . . 11 𝑘𝑗
2322nfcsb1 3851 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴
2423nfel1 2971 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
2521, 24nfim 1897 . . . . . . . 8 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
26 eleq1w 2872 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2726anbi2d 631 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
28 csbeq1a 3842 . . . . . . . . . 10 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
2928eleq1d 2874 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
3027, 29imbi12d 348 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
3125, 30, 7chvarfv 2240 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
32 eqid 2798 . . . . . . . 8 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
3322, 23, 28, 32fvmptf 6767 . . . . . . 7 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3420, 31, 33syl2anc 587 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3534, 31eqeltrd 2890 . . . . 5 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
36 addcl 10611 . . . . . 6 ((𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑗 + 𝑥) ∈ ℂ)
3736adantl 485 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑗 + 𝑥) ∈ ℂ)
384, 19, 35, 37seqf 13390 . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)):𝑍⟶ℂ)
3938ffnd 6489 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍)
40 fsumsermpt.g . . . . 5 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
4140a1i 11 . . . 4 (𝜑𝐺 = seq𝑀( + , (𝑘𝑍𝐴)))
4241fneq1d 6417 . . 3 (𝜑 → (𝐺 Fn 𝑍 ↔ seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍))
4339, 42mpbird 260 . 2 (𝜑𝐺 Fn 𝑍)
44 simpr 488 . . . . 5 ((𝜑𝑚𝑍) → 𝑚𝑍)
4516fvmpt2 6757 . . . . 5 ((𝑚𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
4644, 10, 45syl2anc 587 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
47 nfcv 2955 . . . . . 6 𝑗(𝑀...𝑚)
48 nfcv 2955 . . . . . 6 𝑘(𝑀...𝑚)
49 nfcv 2955 . . . . . 6 𝑗𝐴
5028, 47, 48, 49, 23cbvsum 15047 . . . . 5 Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴
5150a1i 11 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
5246, 51eqtrd 2833 . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
53 simpl 486 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝜑)
54 elfzuz 12901 . . . . . . . 8 (𝑗 ∈ (𝑀...𝑚) → 𝑗 ∈ (ℤ𝑀))
5554, 4eleqtrrdi 2901 . . . . . . 7 (𝑗 ∈ (𝑀...𝑚) → 𝑗𝑍)
5655adantl 485 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗𝑍)
5753, 56, 34syl2anc 587 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
5857adantlr 714 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
59 id 22 . . . . . 6 (𝑚𝑍𝑚𝑍)
6059, 4eleqtrdi 2900 . . . . 5 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
6160adantl 485 . . . 4 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
6253, 56, 31syl2anc 587 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6362adantlr 714 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6458, 61, 63fsumser 15082 . . 3 ((𝜑𝑚𝑍) → Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚))
6540fveq1i 6647 . . . . 5 (𝐺𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚)
6665eqcomi 2807 . . . 4 (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚)
6766a1i 11 . . 3 ((𝜑𝑚𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚))
6852, 64, 673eqtrd 2837 . 2 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
6918, 43, 68eqfnfvd 6783 1 (𝜑𝐹 = 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ⦋csb 3828   ↦ cmpt 5111   Fn wfn 6320  ‘cfv 6325  (class class class)co 7136  ℂcc 10527   + caddc 10532  ℤcz 11972  ℤ≥cuz 12234  ...cfz 12888  seqcseq 13367  Σcsu 15037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038 This theorem is referenced by:  ovolval2lem  43325
 Copyright terms: Public domain W3C validator