Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsermpt Structured version   Visualization version   GIF version

Theorem fsumsermpt 45500
Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsumsermpt.m (𝜑𝑀 ∈ ℤ)
fsumsermpt.z 𝑍 = (ℤ𝑀)
fsumsermpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsumsermpt.f 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
fsumsermpt.g 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
Assertion
Ref Expression
fsumsermpt (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑛   𝑘,𝑀,𝑛   𝑘,𝑍,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑘)   𝐹(𝑘,𝑛)   𝐺(𝑘,𝑛)

Proof of Theorem fsumsermpt
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . . 6 (𝜑 → (𝑀...𝑚) ∈ Fin)
2 simpl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝜑)
3 elfzuz 13580 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
4 fsumsermpt.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2855 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
65adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝑘𝑍)
7 fsumsermpt.a . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
82, 6, 7syl2anc 583 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑚)) → 𝐴 ∈ ℂ)
91, 8fsumcl 15781 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
109adantr 480 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
1110ralrimiva 3152 . . 3 (𝜑 → ∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ)
12 fsumsermpt.f . . . . 5 𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)
13 oveq2 7456 . . . . . . 7 (𝑛 = 𝑚 → (𝑀...𝑛) = (𝑀...𝑚))
1413sumeq1d 15748 . . . . . 6 (𝑛 = 𝑚 → Σ𝑘 ∈ (𝑀...𝑛)𝐴 = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1514cbvmptv 5279 . . . . 5 (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴) = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1612, 15eqtri 2768 . . . 4 𝐹 = (𝑚𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑚)𝐴)
1716fnmpt 6720 . . 3 (∀𝑚𝑍 Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ → 𝐹 Fn 𝑍)
1811, 17syl 17 . 2 (𝜑𝐹 Fn 𝑍)
19 fsumsermpt.m . . . . 5 (𝜑𝑀 ∈ ℤ)
20 simpr 484 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
21 nfv 1913 . . . . . . . . 9 𝑘(𝜑𝑗𝑍)
22 nfcv 2908 . . . . . . . . . . 11 𝑘𝑗
2322nfcsb1 3945 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴
2423nfel1 2925 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
2521, 24nfim 1895 . . . . . . . 8 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
26 eleq1w 2827 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2726anbi2d 629 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
28 csbeq1a 3935 . . . . . . . . . 10 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
2928eleq1d 2829 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
3027, 29imbi12d 344 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
3125, 30, 7chvarfv 2241 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
32 eqid 2740 . . . . . . . 8 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
3322, 23, 28, 32fvmptf 7050 . . . . . . 7 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3420, 31, 33syl2anc 583 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
3534, 31eqeltrd 2844 . . . . 5 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
36 addcl 11266 . . . . . 6 ((𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑗 + 𝑥) ∈ ℂ)
3736adantl 481 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑗 + 𝑥) ∈ ℂ)
384, 19, 35, 37seqf 14074 . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)):𝑍⟶ℂ)
3938ffnd 6748 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍)
40 fsumsermpt.g . . . . 5 𝐺 = seq𝑀( + , (𝑘𝑍𝐴))
4140a1i 11 . . . 4 (𝜑𝐺 = seq𝑀( + , (𝑘𝑍𝐴)))
4241fneq1d 6672 . . 3 (𝜑 → (𝐺 Fn 𝑍 ↔ seq𝑀( + , (𝑘𝑍𝐴)) Fn 𝑍))
4339, 42mpbird 257 . 2 (𝜑𝐺 Fn 𝑍)
44 simpr 484 . . . . 5 ((𝜑𝑚𝑍) → 𝑚𝑍)
4516fvmpt2 7040 . . . . 5 ((𝑚𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑚)𝐴 ∈ ℂ) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
4644, 10, 45syl2anc 583 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑘 ∈ (𝑀...𝑚)𝐴)
47 nfcv 2908 . . . . . 6 𝑗𝐴
4828, 47, 23cbvsum 15743 . . . . 5 Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴
4948a1i 11 . . . 4 ((𝜑𝑚𝑍) → Σ𝑘 ∈ (𝑀...𝑚)𝐴 = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
5046, 49eqtrd 2780 . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚) = Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴)
51 simpl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝜑)
52 elfzuz 13580 . . . . . . . 8 (𝑗 ∈ (𝑀...𝑚) → 𝑗 ∈ (ℤ𝑀))
5352, 4eleqtrrdi 2855 . . . . . . 7 (𝑗 ∈ (𝑀...𝑚) → 𝑗𝑍)
5453adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗𝑍)
5551, 54, 34syl2anc 583 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
5655adantlr 714 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
57 id 22 . . . . . 6 (𝑚𝑍𝑚𝑍)
5857, 4eleqtrdi 2854 . . . . 5 (𝑚𝑍𝑚 ∈ (ℤ𝑀))
5958adantl 481 . . . 4 ((𝜑𝑚𝑍) → 𝑚 ∈ (ℤ𝑀))
6051, 54, 31syl2anc 583 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6160adantlr 714 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑗 ∈ (𝑀...𝑚)) → 𝑗 / 𝑘𝐴 ∈ ℂ)
6256, 59, 61fsumser 15778 . . 3 ((𝜑𝑚𝑍) → Σ𝑗 ∈ (𝑀...𝑚)𝑗 / 𝑘𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚))
6340fveq1i 6921 . . . . 5 (𝐺𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚)
6463eqcomi 2749 . . . 4 (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚)
6564a1i 11 . . 3 ((𝜑𝑚𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑚) = (𝐺𝑚))
6650, 62, 653eqtrd 2784 . 2 ((𝜑𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
6718, 43, 66eqfnfvd 7067 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  csb 3921  cmpt 5249   Fn wfn 6568  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  ovolval2lem  46564
  Copyright terms: Public domain W3C validator