MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj Structured version   Visualization version   GIF version

Theorem iundisj 25447
Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypothesis
Ref Expression
iundisj.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘)

Proof of Theorem iundisj
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4031 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
2 nnuz 12778 . . . . . . . . . 10 ℕ = (ℤ‘1)
31, 2sseqtri 3984 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1)
4 rabn0 4340 . . . . . . . . . 10 ({𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
54biimpri 228 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅)
6 infssuzcl 12833 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
73, 5, 6sylancr 587 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
8 nfrab1 3415 . . . . . . . . . 10 𝑛{𝑛 ∈ ℕ ∣ 𝑥𝐴}
9 nfcv 2891 . . . . . . . . . 10 𝑛
10 nfcv 2891 . . . . . . . . . 10 𝑛 <
118, 9, 10nfinf 9373 . . . . . . . . 9 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
12 nfcv 2891 . . . . . . . . 9 𝑛
1311nfcsb1 3874 . . . . . . . . . 10 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1413nfcri 2883 . . . . . . . . 9 𝑛 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
15 csbeq1a 3865 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1615eleq2d 2814 . . . . . . . . 9 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1711, 12, 14, 16elrabf 3644 . . . . . . . 8 (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
187, 17sylib 218 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1918simpld 494 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ)
2018simprd 495 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
2119nnred 12143 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2221ltnrd 11250 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
23 eliun 4945 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2421ad2antrr 726 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
25 elfzouz 13566 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ (ℤ‘1))
2625, 2eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ ℕ)
2726ad2antlr 727 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
2827nnred 12143 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
29 iundisj.1 . . . . . . . . . . . . . 14 (𝑛 = 𝑘𝐴 = 𝐵)
3029eleq2d 2814 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
31 simpr 484 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
3230, 27, 31elrabd 3650 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
33 infssuzle 12832 . . . . . . . . . . . 12 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴}) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
343, 32, 33sylancr 587 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
35 elfzolt2 13571 . . . . . . . . . . . 12 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3635ad2antlr 727 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3724, 28, 24, 34, 36lelttrd 11274 . . . . . . . . . 10 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3837rexlimdva2 3132 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
3923, 38biimtrid 242 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
4022, 39mtod 198 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
4120, 40eldifd 3914 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
42 csbeq1 3854 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
43 oveq2 7357 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
4443iuneq1d 4969 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
4542, 44difeq12d 4078 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
4645eleq2d 2814 . . . . . . 7 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
4746rspcev 3577 . . . . . 6 ((inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
4819, 41, 47syl2anc 584 . . . . 5 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
49 nfv 1914 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
50 nfcsb1v 3875 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
51 nfcv 2891 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
5250, 51nfdif 4080 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
5352nfcri 2883 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
54 csbeq1a 3865 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
55 oveq2 7357 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
5655iuneq1d 4969 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
5754, 56difeq12d 4078 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
5857eleq2d 2814 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
5949, 53, 58cbvrexw 3272 . . . . 5 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6048, 59sylibr 234 . . . 4 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
61 eldifi 4082 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
6261reximi 3067 . . . 4 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ ℕ 𝑥𝐴)
6360, 62impbii 209 . . 3 (∃𝑛 ∈ ℕ 𝑥𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
64 eliun 4945 . . 3 (𝑥 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
65 eliun 4945 . . 3 (𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
6663, 64, 653bitr4i 303 . 2 (𝑥 𝑛 ∈ ℕ 𝐴𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
6766eqriv 2726 1 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3394  csb 3851  cdif 3900  wss 3903  c0 4284   ciun 4941   class class class wbr 5092  cfv 6482  (class class class)co 7349  infcinf 9331  cr 11008  1c1 11010   < clt 11149  cle 11150  cn 12128  cuz 12735  ..^cfzo 13557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558
This theorem is referenced by:  iunmbl  25452  volsup  25455  sigapildsys  34129  carsgclctunlem3  34288  voliunnfl  37644
  Copyright terms: Public domain W3C validator