MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj Structured version   Visualization version   GIF version

Theorem iundisj 25065
Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypothesis
Ref Expression
iundisj.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘)

Proof of Theorem iundisj
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4078 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ ℕ
2 nnuz 12865 . . . . . . . . . 10 ℕ = (ℤ‘1)
31, 2sseqtri 4019 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1)
4 rabn0 4386 . . . . . . . . . 10 ({𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
54biimpri 227 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅)
6 infssuzcl 12916 . . . . . . . . 9 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
73, 5, 6sylancr 588 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
8 nfrab1 3452 . . . . . . . . . 10 𝑛{𝑛 ∈ ℕ ∣ 𝑥𝐴}
9 nfcv 2904 . . . . . . . . . 10 𝑛
10 nfcv 2904 . . . . . . . . . 10 𝑛 <
118, 9, 10nfinf 9477 . . . . . . . . 9 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )
12 nfcv 2904 . . . . . . . . 9 𝑛
1311nfcsb1 3918 . . . . . . . . . 10 𝑛inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1413nfcri 2891 . . . . . . . . 9 𝑛 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
15 csbeq1a 3908 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1615eleq2d 2820 . . . . . . . . 9 (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1711, 12, 14, 16elrabf 3680 . . . . . . . 8 (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
187, 17sylib 217 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
1918simpld 496 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ)
2018simprd 497 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
2119nnred 12227 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2221ltnrd 11348 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
23 eliun 5002 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2421ad2antrr 725 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
25 elfzouz 13636 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ (ℤ‘1))
2625, 2eleqtrrdi 2845 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 ∈ ℕ)
2726ad2antlr 726 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
2827nnred 12227 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
29 iundisj.1 . . . . . . . . . . . . . 14 (𝑛 = 𝑘𝐴 = 𝐵)
3029eleq2d 2820 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
31 simpr 486 . . . . . . . . . . . . 13 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
3230, 27, 31elrabd 3686 . . . . . . . . . . . 12 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴})
33 infssuzle 12915 . . . . . . . . . . . 12 (({𝑛 ∈ ℕ ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥𝐴}) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
343, 32, 33sylancr 588 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
35 elfzolt2 13641 . . . . . . . . . . . 12 (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3635ad2antlr 726 . . . . . . . . . . 11 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3724, 28, 24, 34, 36lelttrd 11372 . . . . . . . . . 10 (((∃𝑛 ∈ ℕ 𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))
3837rexlimdva2 3158 . . . . . . . . 9 (∃𝑛 ∈ ℕ 𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
3923, 38biimtrid 241 . . . . . . . 8 (∃𝑛 ∈ ℕ 𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
4022, 39mtod 197 . . . . . . 7 (∃𝑛 ∈ ℕ 𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
4120, 40eldifd 3960 . . . . . 6 (∃𝑛 ∈ ℕ 𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
42 csbeq1 3897 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
43 oveq2 7417 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < )))
4443iuneq1d 5025 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)
4542, 44difeq12d 4124 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵))
4645eleq2d 2820 . . . . . . 7 (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
4746rspcev 3613 . . . . . 6 ((inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℕ ∧ 𝑥 ∈ (inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
4819, 41, 47syl2anc 585 . . . . 5 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
49 nfv 1918 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
50 nfcsb1v 3919 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
51 nfcv 2904 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
5250, 51nfdif 4126 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
5352nfcri 2891 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
54 csbeq1a 3908 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
55 oveq2 7417 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
5655iuneq1d 5025 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
5754, 56difeq12d 4124 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
5857eleq2d 2820 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
5949, 53, 58cbvrexw 3305 . . . . 5 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6048, 59sylibr 233 . . . 4 (∃𝑛 ∈ ℕ 𝑥𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
61 eldifi 4127 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
6261reximi 3085 . . . 4 (∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ ℕ 𝑥𝐴)
6360, 62impbii 208 . . 3 (∃𝑛 ∈ ℕ 𝑥𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
64 eliun 5002 . . 3 (𝑥 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥𝐴)
65 eliun 5002 . . 3 (𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
6663, 64, 653bitr4i 303 . 2 (𝑥 𝑛 ∈ ℕ 𝐴𝑥 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
6766eqriv 2730 1 𝑛 ∈ ℕ 𝐴 = 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wrex 3071  {crab 3433  csb 3894  cdif 3946  wss 3949  c0 4323   ciun 4998   class class class wbr 5149  cfv 6544  (class class class)co 7409  infcinf 9436  cr 11109  1c1 11111   < clt 11248  cle 11249  cn 12212  cuz 12822  ..^cfzo 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628
This theorem is referenced by:  iunmbl  25070  volsup  25073  sigapildsys  33160  carsgclctunlem3  33319  voliunnfl  36532
  Copyright terms: Public domain W3C validator