Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ⊆ ℕ |
2 | | nnuz 12550 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
3 | 1, 2 | sseqtri 3953 |
. . . . . . . . 9
⊢ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ⊆
(ℤ≥‘1) |
4 | | rabn0 4316 |
. . . . . . . . . 10
⊢ ({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ≠ ∅ ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ 𝐴) |
5 | 4 | biimpri 227 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ≠ ∅) |
6 | | infssuzcl 12601 |
. . . . . . . . 9
⊢ (({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ⊆ (ℤ≥‘1)
∧ {𝑛 ∈ ℕ
∣ 𝑥 ∈ 𝐴} ≠ ∅) →
inf({𝑛 ∈ ℕ
∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}) |
7 | 3, 5, 6 | sylancr 586 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}) |
8 | | nfrab1 3310 |
. . . . . . . . . 10
⊢
Ⅎ𝑛{𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} |
9 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛ℝ |
10 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛
< |
11 | 8, 9, 10 | nfinf 9171 |
. . . . . . . . 9
⊢
Ⅎ𝑛inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) |
12 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛ℕ |
13 | 11 | nfcsb1 3852 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴 |
14 | 13 | nfcri 2893 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑥 ∈
⦋inf({𝑛
∈ ℕ ∣ 𝑥
∈ 𝐴}, ℝ, < )
/ 𝑛⦌𝐴 |
15 | | csbeq1a 3842 |
. . . . . . . . . 10
⊢ (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) → 𝐴 = ⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴) |
16 | 15 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑛 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴)) |
17 | 11, 12, 14, 16 | elrabf 3613 |
. . . . . . . 8
⊢
(inf({𝑛 ∈
ℕ ∣ 𝑥 ∈
𝐴}, ℝ, < ) ∈
{𝑛 ∈ ℕ ∣
𝑥 ∈ 𝐴} ↔ (inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈ ℕ ∧
𝑥 ∈
⦋inf({𝑛
∈ ℕ ∣ 𝑥
∈ 𝐴}, ℝ, < )
/ 𝑛⦌𝐴)) |
18 | 7, 17 | sylib 217 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → (inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈ ℕ ∧
𝑥 ∈
⦋inf({𝑛
∈ ℕ ∣ 𝑥
∈ 𝐴}, ℝ, < )
/ 𝑛⦌𝐴)) |
19 | 18 | simpld 494 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈
ℕ) |
20 | 18 | simprd 495 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ ⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴) |
21 | 19 | nnred 11918 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
22 | 21 | ltnrd 11039 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → ¬ inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) |
23 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝑥 ∈ 𝐵) |
24 | 21 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ∈
ℝ) |
25 | | elfzouz 13320 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) → 𝑘 ∈
(ℤ≥‘1)) |
26 | 25, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) → 𝑘 ∈
ℕ) |
27 | 26 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ ℕ) |
28 | 27 | nnred 11918 |
. . . . . . . . . . 11
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ ℝ) |
29 | | iundisj.1 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
30 | 29 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
32 | 30, 27, 31 | elrabd 3619 |
. . . . . . . . . . . 12
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}) |
33 | | infssuzle 12600 |
. . . . . . . . . . . 12
⊢ (({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴} ⊆ (ℤ≥‘1)
∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}) → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ≤ 𝑘) |
34 | 3, 32, 33 | sylancr 586 |
. . . . . . . . . . 11
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) ≤ 𝑘) |
35 | | elfzolt2 13325 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) |
36 | 35 | ad2antlr 723 |
. . . . . . . . . . 11
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → 𝑘 < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) |
37 | 24, 28, 24, 34, 36 | lelttrd 11063 |
. . . . . . . . . 10
⊢
(((∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) ∧ 𝑥 ∈ 𝐵) → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < )) |
38 | 37 | rexlimdva2 3215 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝑥 ∈ 𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) |
39 | 23, 38 | syl5bi 241 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → (𝑥 ∈ ∪
𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) < inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) |
40 | 22, 39 | mtod 197 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪
𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵) |
41 | 20, 40 | eldifd 3894 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → 𝑥 ∈ (⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵)) |
42 | | csbeq1 3831 |
. . . . . . . . 9
⊢ (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) →
⦋𝑚 / 𝑛⦌𝐴 = ⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴) |
43 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))) |
44 | 43 | iuneq1d 4948 |
. . . . . . . . 9
⊢ (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) → ∪ 𝑘 ∈ (1..^𝑚)𝐵 = ∪ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵) |
45 | 42, 44 | difeq12d 4054 |
. . . . . . . 8
⊢ (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) →
(⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵) = (⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵)) |
46 | 45 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑚 = inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) → (𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (⦋inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ) / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵))) |
47 | 46 | rspcev 3552 |
. . . . . 6
⊢
((inf({𝑛 ∈
ℕ ∣ 𝑥 ∈
𝐴}, ℝ, < ) ∈
ℕ ∧ 𝑥 ∈
(⦋inf({𝑛
∈ ℕ ∣ 𝑥
∈ 𝐴}, ℝ, < )
/ 𝑛⦌𝐴 ∖ ∪ 𝑘 ∈ (1..^inf({𝑛 ∈ ℕ ∣ 𝑥 ∈ 𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ ℕ 𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵)) |
48 | 19, 41, 47 | syl2anc 583 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵)) |
49 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑚 𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵) |
50 | | nfcsb1v 3853 |
. . . . . . . 8
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
51 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛∪ 𝑘 ∈ (1..^𝑚)𝐵 |
52 | 50, 51 | nfdif 4056 |
. . . . . . 7
⊢
Ⅎ𝑛(⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵) |
53 | 52 | nfcri 2893 |
. . . . . 6
⊢
Ⅎ𝑛 𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵) |
54 | | csbeq1a 3842 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
55 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚)) |
56 | 55 | iuneq1d 4948 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ∪
𝑘 ∈ (1..^𝑛)𝐵 = ∪ 𝑘 ∈ (1..^𝑚)𝐵) |
57 | 54, 56 | difeq12d 4054 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵) = (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵)) |
58 | 57 | eleq2d 2824 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵))) |
59 | 49, 53, 58 | cbvrexw 3364 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ ℕ 𝑥 ∈ (⦋𝑚 / 𝑛⦌𝐴 ∖ ∪
𝑘 ∈ (1..^𝑚)𝐵)) |
60 | 48, 59 | sylibr 233 |
. . . 4
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵)) |
61 | | eldifi 4057 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵) → 𝑥 ∈ 𝐴) |
62 | 61 | reximi 3174 |
. . . 4
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ ℕ 𝑥 ∈ 𝐴) |
63 | 60, 62 | impbii 208 |
. . 3
⊢
(∃𝑛 ∈
ℕ 𝑥 ∈ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵)) |
64 | | eliun 4925 |
. . 3
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ 𝐴) |
65 | | eliun 4925 |
. . 3
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝐴 ∖ ∪
𝑘 ∈ (1..^𝑛)𝐵)) |
66 | 63, 64, 65 | 3bitr4i 302 |
. 2
⊢ (𝑥 ∈ ∪ 𝑛 ∈ ℕ 𝐴 ↔ 𝑥 ∈ ∪
𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
67 | 66 | eqriv 2735 |
1
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) |