Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsubmpt Structured version   Visualization version   GIF version

Theorem climsubmpt 43526
Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climsubmpt.k 𝑘𝜑
climsubmpt.z 𝑍 = (ℤ𝑀)
climsubmpt.m (𝜑𝑀 ∈ ℤ)
climsubmpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
climsubmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
climsubmpt.c (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
climsubmpt.d (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
Assertion
Ref Expression
climsubmpt (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑀(𝑘)

Proof of Theorem climsubmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsubmpt.z . 2 𝑍 = (ℤ𝑀)
2 climsubmpt.m . 2 (𝜑𝑀 ∈ ℤ)
3 climsubmpt.c . 2 (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
41fvexi 6833 . . . 4 𝑍 ∈ V
54mptex 7149 . . 3 (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V
65a1i 11 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V)
7 climsubmpt.d . 2 (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
8 simpr 485 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
9 climsubmpt.k . . . . . . 7 𝑘𝜑
10 nfv 1916 . . . . . . 7 𝑘 𝑗𝑍
119, 10nfan 1901 . . . . . 6 𝑘(𝜑𝑗𝑍)
12 nfcv 2904 . . . . . . . 8 𝑘𝑗
1312nfcsb1 3866 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
1413nfel1 2920 . . . . . 6 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
1511, 14nfim 1898 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
16 eleq1w 2819 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1716anbi2d 629 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
18 csbeq1a 3856 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1918eleq1d 2821 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
2017, 19imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
21 climsubmpt.a . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2215, 20, 21chvarfv 2232 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
23 eqid 2736 . . . . 5 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
2412, 13, 18, 23fvmptf 6946 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
258, 22, 24syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2625, 22eqeltrd 2837 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
2712nfcsb1 3866 . . . . . . 7 𝑘𝑗 / 𝑘𝐵
28 nfcv 2904 . . . . . . 7 𝑘
2927, 28nfel 2918 . . . . . 6 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
3011, 29nfim 1898 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
31 csbeq1a 3856 . . . . . . 7 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
3231eleq1d 2821 . . . . . 6 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
3317, 32imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
34 climsubmpt.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
3530, 33, 34chvarfv 2232 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
36 eqid 2736 . . . . 5 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
3712, 27, 31, 36fvmptf 6946 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
388, 35, 37syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3938, 35eqeltrd 2837 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) ∈ ℂ)
40 ovexd 7364 . . . 4 ((𝜑𝑗𝑍) → (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V)
41 nfcv 2904 . . . . . 6 𝑘
4213, 41, 27nfov 7359 . . . . 5 𝑘(𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵)
4318, 31oveq12d 7347 . . . . 5 (𝑘 = 𝑗 → (𝐴𝐵) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
44 eqid 2736 . . . . 5 (𝑘𝑍 ↦ (𝐴𝐵)) = (𝑘𝑍 ↦ (𝐴𝐵))
4512, 42, 43, 44fvmptf 6946 . . . 4 ((𝑗𝑍 ∧ (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
468, 40, 45syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4725, 38oveq12d 7347 . . 3 ((𝜑𝑗𝑍) → (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4846, 47eqtr4d 2779 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)))
491, 2, 3, 6, 7, 26, 39, 48climsub 15434 1 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wnf 1784  wcel 2105  Vcvv 3441  csb 3842   class class class wbr 5089  cmpt 5172  cfv 6473  (class class class)co 7329  cc 10962  cmin 11298  cz 12412  cuz 12675  cli 15284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-sup 9291  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-seq 13815  df-exp 13876  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288
This theorem is referenced by:  climsubc2mpt  43527  climsubc1mpt  43528
  Copyright terms: Public domain W3C validator