![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climsubmpt | Structured version Visualization version GIF version |
Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
climsubmpt.k | ⊢ Ⅎ𝑘𝜑 |
climsubmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climsubmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climsubmpt.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
climsubmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
climsubmpt.c | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) |
climsubmpt.d | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
Ref | Expression |
---|---|
climsubmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climsubmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climsubmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climsubmpt.c | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) | |
4 | 1 | fvexi 6936 | . . . 4 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7262 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V) |
7 | climsubmpt.d | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) | |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
9 | climsubmpt.k | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
11 | 9, 10 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
12 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
13 | 12 | nfcsb1 3945 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
14 | 13 | nfel1 2925 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ |
15 | 11, 14 | nfim 1895 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
16 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
17 | 16 | anbi2d 629 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
18 | csbeq1a 3935 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
19 | 18 | eleq1d 2829 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ)) |
20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ))) |
21 | climsubmpt.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
22 | 15, 20, 21 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
23 | eqid 2740 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) | |
24 | 12, 13, 18, 23 | fvmptf 7052 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | 8, 22, 24 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
26 | 25, 22 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) ∈ ℂ) |
27 | 12 | nfcsb1 3945 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
28 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
29 | 27, 28 | nfel 2923 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
30 | 11, 29 | nfim 1895 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
31 | csbeq1a 3935 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
32 | 31 | eleq1d 2829 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
33 | 17, 32 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
34 | climsubmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
35 | 30, 33, 34 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
36 | eqid 2740 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
37 | 12, 27, 31, 36 | fvmptf 7052 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
38 | 8, 35, 37 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
39 | 38, 35 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∈ ℂ) |
40 | ovexd 7485 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) | |
41 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘 − | |
42 | 13, 41, 27 | nfov 7480 | . . . . 5 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) |
43 | 18, 31 | oveq12d 7468 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐴 − 𝐵) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
44 | eqid 2740 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) = (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) | |
45 | 12, 42, 43, 44 | fvmptf 7052 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
46 | 8, 40, 45 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
47 | 25, 38 | oveq12d 7468 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
48 | 46, 47 | eqtr4d 2783 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗))) |
49 | 1, 2, 3, 6, 7, 26, 39, 48 | climsub 15682 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6575 (class class class)co 7450 ℂcc 11184 − cmin 11522 ℤcz 12641 ℤ≥cuz 12905 ⇝ cli 15532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-clim 15536 |
This theorem is referenced by: climsubc2mpt 45584 climsubc1mpt 45585 |
Copyright terms: Public domain | W3C validator |