| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climsubmpt | Structured version Visualization version GIF version | ||
| Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| climsubmpt.k | ⊢ Ⅎ𝑘𝜑 |
| climsubmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climsubmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climsubmpt.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| climsubmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| climsubmpt.c | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) |
| climsubmpt.d | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
| Ref | Expression |
|---|---|
| climsubmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsubmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climsubmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climsubmpt.c | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) | |
| 4 | 1 | fvexi 6840 | . . . 4 ⊢ 𝑍 ∈ V |
| 5 | 4 | mptex 7163 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V) |
| 7 | climsubmpt.d | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) | |
| 8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 9 | climsubmpt.k | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 10 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 11 | 9, 10 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 12 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
| 13 | 12 | nfcsb1 3876 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
| 14 | 13 | nfel1 2908 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ |
| 15 | 11, 14 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
| 16 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 17 | 16 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 18 | csbeq1a 3867 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 19 | 18 | eleq1d 2813 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ)) |
| 20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ))) |
| 21 | climsubmpt.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 22 | 15, 20, 21 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
| 23 | eqid 2729 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) | |
| 24 | 12, 13, 18, 23 | fvmptf 6955 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 25 | 8, 22, 24 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 26 | 25, 22 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) ∈ ℂ) |
| 27 | 12 | nfcsb1 3876 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
| 28 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
| 29 | 27, 28 | nfel 2906 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
| 30 | 11, 29 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 31 | csbeq1a 3867 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 32 | 31 | eleq1d 2813 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
| 33 | 17, 32 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
| 34 | climsubmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
| 35 | 30, 33, 34 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 36 | eqid 2729 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
| 37 | 12, 27, 31, 36 | fvmptf 6955 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 38 | 8, 35, 37 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 39 | 38, 35 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∈ ℂ) |
| 40 | ovexd 7388 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) | |
| 41 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘 − | |
| 42 | 13, 41, 27 | nfov 7383 | . . . . 5 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) |
| 43 | 18, 31 | oveq12d 7371 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐴 − 𝐵) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 44 | eqid 2729 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) = (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) | |
| 45 | 12, 42, 43, 44 | fvmptf 6955 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 46 | 8, 40, 45 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 47 | 25, 38 | oveq12d 7371 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 48 | 46, 47 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗))) |
| 49 | 1, 2, 3, 6, 7, 26, 39, 48 | climsub 15559 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 − cmin 11365 ℤcz 12489 ℤ≥cuz 12753 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 |
| This theorem is referenced by: climsubc2mpt 45643 climsubc1mpt 45644 |
| Copyright terms: Public domain | W3C validator |