Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsubmpt Structured version   Visualization version   GIF version

Theorem climsubmpt 42295
 Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climsubmpt.k 𝑘𝜑
climsubmpt.z 𝑍 = (ℤ𝑀)
climsubmpt.m (𝜑𝑀 ∈ ℤ)
climsubmpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
climsubmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
climsubmpt.c (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
climsubmpt.d (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
Assertion
Ref Expression
climsubmpt (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑀(𝑘)

Proof of Theorem climsubmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsubmpt.z . 2 𝑍 = (ℤ𝑀)
2 climsubmpt.m . 2 (𝜑𝑀 ∈ ℤ)
3 climsubmpt.c . 2 (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
41fvexi 6663 . . . 4 𝑍 ∈ V
54mptex 6967 . . 3 (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V
65a1i 11 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V)
7 climsubmpt.d . 2 (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
8 simpr 488 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
9 climsubmpt.k . . . . . . 7 𝑘𝜑
10 nfv 1915 . . . . . . 7 𝑘 𝑗𝑍
119, 10nfan 1900 . . . . . 6 𝑘(𝜑𝑗𝑍)
12 nfcv 2958 . . . . . . . 8 𝑘𝑗
1312nfcsb1 3854 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
1413nfel1 2974 . . . . . 6 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
1511, 14nfim 1897 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
16 eleq1w 2875 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1716anbi2d 631 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
18 csbeq1a 3845 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1918eleq1d 2877 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
2017, 19imbi12d 348 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
21 climsubmpt.a . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2215, 20, 21chvarfv 2241 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
23 eqid 2801 . . . . 5 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
2412, 13, 18, 23fvmptf 6770 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
258, 22, 24syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2625, 22eqeltrd 2893 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
2712nfcsb1 3854 . . . . . . 7 𝑘𝑗 / 𝑘𝐵
28 nfcv 2958 . . . . . . 7 𝑘
2927, 28nfel 2972 . . . . . 6 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
3011, 29nfim 1897 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
31 csbeq1a 3845 . . . . . . 7 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
3231eleq1d 2877 . . . . . 6 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
3317, 32imbi12d 348 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
34 climsubmpt.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
3530, 33, 34chvarfv 2241 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
36 eqid 2801 . . . . 5 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
3712, 27, 31, 36fvmptf 6770 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
388, 35, 37syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3938, 35eqeltrd 2893 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) ∈ ℂ)
40 ovexd 7174 . . . 4 ((𝜑𝑗𝑍) → (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V)
41 nfcv 2958 . . . . . 6 𝑘
4213, 41, 27nfov 7169 . . . . 5 𝑘(𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵)
4318, 31oveq12d 7157 . . . . 5 (𝑘 = 𝑗 → (𝐴𝐵) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
44 eqid 2801 . . . . 5 (𝑘𝑍 ↦ (𝐴𝐵)) = (𝑘𝑍 ↦ (𝐴𝐵))
4512, 42, 43, 44fvmptf 6770 . . . 4 ((𝑗𝑍 ∧ (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
468, 40, 45syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4725, 38oveq12d 7157 . . 3 ((𝜑𝑗𝑍) → (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4846, 47eqtr4d 2839 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)))
491, 2, 3, 6, 7, 26, 39, 48climsub 14986 1 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  Vcvv 3444  ⦋csb 3831   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  ℂcc 10528   − cmin 10863  ℤcz 11973  ℤ≥cuz 12235   ⇝ cli 14837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841 This theorem is referenced by:  climsubc2mpt  42296  climsubc1mpt  42297
 Copyright terms: Public domain W3C validator