Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climsubmpt | Structured version Visualization version GIF version |
Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
climsubmpt.k | ⊢ Ⅎ𝑘𝜑 |
climsubmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climsubmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climsubmpt.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
climsubmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
climsubmpt.c | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) |
climsubmpt.d | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
Ref | Expression |
---|---|
climsubmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climsubmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climsubmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climsubmpt.c | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) | |
4 | 1 | fvexi 6782 | . . . 4 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7093 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V) |
7 | climsubmpt.d | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) | |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
9 | climsubmpt.k | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1920 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
11 | 9, 10 | nfan 1905 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
12 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
13 | 12 | nfcsb1 3860 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
14 | 13 | nfel1 2924 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ |
15 | 11, 14 | nfim 1902 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
16 | eleq1w 2822 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
17 | 16 | anbi2d 628 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
18 | csbeq1a 3850 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
19 | 18 | eleq1d 2824 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ)) |
20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ))) |
21 | climsubmpt.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
22 | 15, 20, 21 | chvarfv 2236 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
23 | eqid 2739 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) | |
24 | 12, 13, 18, 23 | fvmptf 6890 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | 8, 22, 24 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
26 | 25, 22 | eqeltrd 2840 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) ∈ ℂ) |
27 | 12 | nfcsb1 3860 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
28 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
29 | 27, 28 | nfel 2922 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
30 | 11, 29 | nfim 1902 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
31 | csbeq1a 3850 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
32 | 31 | eleq1d 2824 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
33 | 17, 32 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
34 | climsubmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
35 | 30, 33, 34 | chvarfv 2236 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
36 | eqid 2739 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
37 | 12, 27, 31, 36 | fvmptf 6890 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
38 | 8, 35, 37 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
39 | 38, 35 | eqeltrd 2840 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∈ ℂ) |
40 | ovexd 7303 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) | |
41 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘 − | |
42 | 13, 41, 27 | nfov 7298 | . . . . 5 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) |
43 | 18, 31 | oveq12d 7286 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐴 − 𝐵) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
44 | eqid 2739 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) = (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) | |
45 | 12, 42, 43, 44 | fvmptf 6890 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
46 | 8, 40, 45 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
47 | 25, 38 | oveq12d 7286 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
48 | 46, 47 | eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗))) |
49 | 1, 2, 3, 6, 7, 26, 39, 48 | climsub 15324 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 Vcvv 3430 ⦋csb 3836 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 − cmin 11188 ℤcz 12302 ℤ≥cuz 12564 ⇝ cli 15174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 |
This theorem is referenced by: climsubc2mpt 43156 climsubc1mpt 43157 |
Copyright terms: Public domain | W3C validator |