Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsubmpt Structured version   Visualization version   GIF version

Theorem climsubmpt 45516
Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
climsubmpt.k 𝑘𝜑
climsubmpt.z 𝑍 = (ℤ𝑀)
climsubmpt.m (𝜑𝑀 ∈ ℤ)
climsubmpt.a ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
climsubmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
climsubmpt.c (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
climsubmpt.d (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
Assertion
Ref Expression
climsubmpt (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑀(𝑘)

Proof of Theorem climsubmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsubmpt.z . 2 𝑍 = (ℤ𝑀)
2 climsubmpt.m . 2 (𝜑𝑀 ∈ ℤ)
3 climsubmpt.c . 2 (𝜑 → (𝑘𝑍𝐴) ⇝ 𝐶)
41fvexi 6933 . . . 4 𝑍 ∈ V
54mptex 7258 . . 3 (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V
65a1i 11 . 2 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ∈ V)
7 climsubmpt.d . 2 (𝜑 → (𝑘𝑍𝐵) ⇝ 𝐷)
8 simpr 484 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
9 climsubmpt.k . . . . . . 7 𝑘𝜑
10 nfv 1913 . . . . . . 7 𝑘 𝑗𝑍
119, 10nfan 1898 . . . . . 6 𝑘(𝜑𝑗𝑍)
12 nfcv 2904 . . . . . . . 8 𝑘𝑗
1312nfcsb1 3939 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
1413nfel1 2921 . . . . . 6 𝑘𝑗 / 𝑘𝐴 ∈ ℂ
1511, 14nfim 1895 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
16 eleq1w 2821 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1716anbi2d 629 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
18 csbeq1a 3929 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1918eleq1d 2823 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝑗 / 𝑘𝐴 ∈ ℂ))
2017, 19imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)))
21 climsubmpt.a . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2215, 20, 21chvarfv 2236 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
23 eqid 2734 . . . . 5 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
2412, 13, 18, 23fvmptf 7048 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
258, 22, 24syl2anc 583 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2625, 22eqeltrd 2838 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐴)‘𝑗) ∈ ℂ)
2712nfcsb1 3939 . . . . . . 7 𝑘𝑗 / 𝑘𝐵
28 nfcv 2904 . . . . . . 7 𝑘
2927, 28nfel 2919 . . . . . 6 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
3011, 29nfim 1895 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
31 csbeq1a 3929 . . . . . . 7 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
3231eleq1d 2823 . . . . . 6 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
3317, 32imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)))
34 climsubmpt.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
3530, 33, 34chvarfv 2236 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 ∈ ℂ)
36 eqid 2734 . . . . 5 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
3712, 27, 31, 36fvmptf 7048 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐵 ∈ ℂ) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
388, 35, 37syl2anc 583 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3938, 35eqeltrd 2838 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍𝐵)‘𝑗) ∈ ℂ)
40 ovexd 7480 . . . 4 ((𝜑𝑗𝑍) → (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V)
41 nfcv 2904 . . . . . 6 𝑘
4213, 41, 27nfov 7475 . . . . 5 𝑘(𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵)
4318, 31oveq12d 7463 . . . . 5 (𝑘 = 𝑗 → (𝐴𝐵) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
44 eqid 2734 . . . . 5 (𝑘𝑍 ↦ (𝐴𝐵)) = (𝑘𝑍 ↦ (𝐴𝐵))
4512, 42, 43, 44fvmptf 7048 . . . 4 ((𝑗𝑍 ∧ (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵) ∈ V) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
468, 40, 45syl2anc 583 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4725, 38oveq12d 7463 . . 3 ((𝜑𝑗𝑍) → (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴𝑗 / 𝑘𝐵))
4846, 47eqtr4d 2777 . 2 ((𝜑𝑗𝑍) → ((𝑘𝑍 ↦ (𝐴𝐵))‘𝑗) = (((𝑘𝑍𝐴)‘𝑗) − ((𝑘𝑍𝐵)‘𝑗)))
491, 2, 3, 6, 7, 26, 39, 48climsub 15676 1 (𝜑 → (𝑘𝑍 ↦ (𝐴𝐵)) ⇝ (𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2103  Vcvv 3482  csb 3915   class class class wbr 5169  cmpt 5252  cfv 6572  (class class class)co 7445  cc 11178  cmin 11516  cz 12635  cuz 12899  cli 15526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-sup 9507  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530
This theorem is referenced by:  climsubc2mpt  45517  climsubc1mpt  45518
  Copyright terms: Public domain W3C validator