![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climsubmpt | Structured version Visualization version GIF version |
Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
climsubmpt.k | ⊢ Ⅎ𝑘𝜑 |
climsubmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climsubmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climsubmpt.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
climsubmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
climsubmpt.c | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) |
climsubmpt.d | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
Ref | Expression |
---|---|
climsubmpt | ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climsubmpt.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climsubmpt.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climsubmpt.c | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) | |
4 | 1 | fvexi 6928 | . . . 4 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7250 | . . 3 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V) |
7 | climsubmpt.d | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) | |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
9 | climsubmpt.k | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
11 | 9, 10 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
12 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
13 | 12 | nfcsb1 3935 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
14 | 13 | nfel1 2922 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ |
15 | 11, 14 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
16 | eleq1w 2824 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
17 | 16 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
18 | csbeq1a 3925 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
19 | 18 | eleq1d 2826 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ)) |
20 | 17, 19 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ))) |
21 | climsubmpt.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
22 | 15, 20, 21 | chvarfv 2240 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
23 | eqid 2737 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) | |
24 | 12, 13, 18, 23 | fvmptf 7044 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | 8, 22, 24 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
26 | 25, 22 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) ∈ ℂ) |
27 | 12 | nfcsb1 3935 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
28 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑘ℂ | |
29 | 27, 28 | nfel 2920 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
30 | 11, 29 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
31 | csbeq1a 3925 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
32 | 31 | eleq1d 2826 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
33 | 17, 32 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
34 | climsubmpt.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
35 | 30, 33, 34 | chvarfv 2240 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
36 | eqid 2737 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
37 | 12, 27, 31, 36 | fvmptf 7044 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
38 | 8, 35, 37 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
39 | 38, 35 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∈ ℂ) |
40 | ovexd 7473 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) | |
41 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘 − | |
42 | 13, 41, 27 | nfov 7468 | . . . . 5 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) |
43 | 18, 31 | oveq12d 7456 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐴 − 𝐵) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
44 | eqid 2737 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) = (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) | |
45 | 12, 42, 43, 44 | fvmptf 7044 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
46 | 8, 40, 45 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
47 | 25, 38 | oveq12d 7456 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
48 | 46, 47 | eqtr4d 2780 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗))) |
49 | 1, 2, 3, 6, 7, 26, 39, 48 | climsub 15676 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2108 Vcvv 3481 ⦋csb 3911 class class class wbr 5151 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 ℂcc 11160 − cmin 11499 ℤcz 12620 ℤ≥cuz 12885 ⇝ cli 15526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-seq 14049 df-exp 14109 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 |
This theorem is referenced by: climsubc2mpt 45645 climsubc1mpt 45646 |
Copyright terms: Public domain | W3C validator |