![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfveqmpt3 | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 44373 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climfveqmpt3.k | ⊢ Ⅎ𝑘𝜑 |
climfveqmpt3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfveqmpt3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfveqmpt3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
climfveqmpt3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
climfveqmpt3.i | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climfveqmpt3.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐶) |
climfveqmpt3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) |
climfveqmpt3.d | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
climfveqmpt3 | ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfveqmpt3.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climfveqmpt3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7222 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | climfveqmpt3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | 4 | mptexd 7222 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ V) |
6 | climfveqmpt3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climfveqmpt3.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
9 | 7, 8 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
11 | 10 | nfcsb1 3916 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
12 | 10 | nfcsb1 3916 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐷 |
13 | 11, 12 | nfeq 2916 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷 |
14 | 9, 13 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
15 | eleq1w 2816 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | csbeq1a 3906 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
18 | csbeq1a 3906 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐷 = ⦋𝑗 / 𝑘⦌𝐷) | |
19 | 17, 18 | eqeq12d 2748 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 = 𝐷 ↔ ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷)) |
20 | 16, 19 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷))) |
21 | climfveqmpt3.d | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) | |
22 | 14, 20, 21 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
23 | climfveqmpt3.i | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
24 | 23 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
25 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
26 | 24, 25 | sseldd 3982 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐴) |
27 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘𝑈 | |
28 | 11, 27 | nfel 2917 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈 |
29 | 9, 28 | nfim 1899 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
30 | 17 | eleq1d 2818 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ 𝑈 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈)) |
31 | 16, 30 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈))) |
32 | climfveqmpt3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) | |
33 | 29, 31, 32 | chvarfv 2233 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
34 | eqid 2732 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
35 | 10, 11, 17, 34 | fvmptf 7016 | . . . 4 ⊢ ((𝑗 ∈ 𝐴 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
36 | 26, 33, 35 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
37 | climfveqmpt3.s | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐶) | |
38 | 37 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐶) |
39 | 38, 25 | sseldd 3982 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐶) |
40 | 22, 33 | eqeltrrd 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) |
41 | eqid 2732 | . . . . 5 ⊢ (𝑘 ∈ 𝐶 ↦ 𝐷) = (𝑘 ∈ 𝐶 ↦ 𝐷) | |
42 | 10, 12, 18, 41 | fvmptf 7016 | . . . 4 ⊢ ((𝑗 ∈ 𝐶 ∧ ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
43 | 39, 40, 42 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
44 | 22, 36, 43 | 3eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗)) |
45 | 1, 3, 5, 6, 44 | climfveq 44371 | 1 ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Vcvv 3474 ⦋csb 3892 ⊆ wss 3947 ↦ cmpt 5230 ‘cfv 6540 ℤcz 12554 ℤ≥cuz 12818 ⇝ cli 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 |
This theorem is referenced by: smflimmpt 45512 |
Copyright terms: Public domain | W3C validator |