Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfveqmpt3 | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 43441 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climfveqmpt3.k | ⊢ Ⅎ𝑘𝜑 |
climfveqmpt3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfveqmpt3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfveqmpt3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
climfveqmpt3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
climfveqmpt3.i | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climfveqmpt3.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐶) |
climfveqmpt3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) |
climfveqmpt3.d | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
climfveqmpt3 | ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfveqmpt3.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climfveqmpt3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7132 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | climfveqmpt3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | 4 | mptexd 7132 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ V) |
6 | climfveqmpt3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climfveqmpt3.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
9 | 7, 8 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
11 | 10 | nfcsb1 3861 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
12 | 10 | nfcsb1 3861 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐷 |
13 | 11, 12 | nfeq 2918 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷 |
14 | 9, 13 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
15 | eleq1w 2819 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | csbeq1a 3851 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
18 | csbeq1a 3851 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐷 = ⦋𝑗 / 𝑘⦌𝐷) | |
19 | 17, 18 | eqeq12d 2752 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 = 𝐷 ↔ ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷)) |
20 | 16, 19 | imbi12d 345 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷))) |
21 | climfveqmpt3.d | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) | |
22 | 14, 20, 21 | chvarfv 2231 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
23 | climfveqmpt3.i | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
24 | 23 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
25 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
26 | 24, 25 | sseldd 3927 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐴) |
27 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑘𝑈 | |
28 | 11, 27 | nfel 2919 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈 |
29 | 9, 28 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
30 | 17 | eleq1d 2821 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ 𝑈 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈)) |
31 | 16, 30 | imbi12d 345 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈))) |
32 | climfveqmpt3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) | |
33 | 29, 31, 32 | chvarfv 2231 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
34 | eqid 2736 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
35 | 10, 11, 17, 34 | fvmptf 6928 | . . . 4 ⊢ ((𝑗 ∈ 𝐴 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
36 | 26, 33, 35 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
37 | climfveqmpt3.s | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐶) | |
38 | 37 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐶) |
39 | 38, 25 | sseldd 3927 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐶) |
40 | 22, 33 | eqeltrrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) |
41 | eqid 2736 | . . . . 5 ⊢ (𝑘 ∈ 𝐶 ↦ 𝐷) = (𝑘 ∈ 𝐶 ↦ 𝐷) | |
42 | 10, 12, 18, 41 | fvmptf 6928 | . . . 4 ⊢ ((𝑗 ∈ 𝐶 ∧ ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
43 | 39, 40, 42 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
44 | 22, 36, 43 | 3eqtr4d 2786 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗)) |
45 | 1, 3, 5, 6, 44 | climfveq 43439 | 1 ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 Vcvv 3437 ⦋csb 3837 ⊆ wss 3892 ↦ cmpt 5164 ‘cfv 6458 ℤcz 12369 ℤ≥cuz 12632 ⇝ cli 15242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 |
This theorem is referenced by: smflimmpt 44578 |
Copyright terms: Public domain | W3C validator |