Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt3 Structured version   Visualization version   GIF version

Theorem climfveqmpt3 44883
Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 44872 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqmpt3.k 𝑘𝜑
climfveqmpt3.m (𝜑𝑀 ∈ ℤ)
climfveqmpt3.z 𝑍 = (ℤ𝑀)
climfveqmpt3.a (𝜑𝐴𝑉)
climfveqmpt3.c (𝜑𝐶𝑊)
climfveqmpt3.i (𝜑𝑍𝐴)
climfveqmpt3.s (𝜑𝑍𝐶)
climfveqmpt3.b ((𝜑𝑘𝑍) → 𝐵𝑈)
climfveqmpt3.d ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climfveqmpt3 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑈,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqmpt3
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climfveqmpt3.z . 2 𝑍 = (ℤ𝑀)
2 climfveqmpt3.a . . 3 (𝜑𝐴𝑉)
32mptexd 7217 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climfveqmpt3.c . . 3 (𝜑𝐶𝑊)
54mptexd 7217 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climfveqmpt3.m . 2 (𝜑𝑀 ∈ ℤ)
7 climfveqmpt3.k . . . . . 6 𝑘𝜑
8 nfv 1909 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1894 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcv 2895 . . . . . . 7 𝑘𝑗
1110nfcsb1 3909 . . . . . 6 𝑘𝑗 / 𝑘𝐵
1210nfcsb1 3909 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1311, 12nfeq 2908 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1891 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2808 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 628 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3899 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3899 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2740 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climfveqmpt3.d . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2225 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climfveqmpt3.i . . . . . 6 (𝜑𝑍𝐴)
2423adantr 480 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐴)
25 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2624, 25sseldd 3975 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
27 nfcv 2895 . . . . . . 7 𝑘𝑈
2811, 27nfel 2909 . . . . . 6 𝑘𝑗 / 𝑘𝐵𝑈
299, 28nfim 1891 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
3017eleq1d 2810 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑈𝑗 / 𝑘𝐵𝑈))
3116, 30imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵𝑈) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)))
32 climfveqmpt3.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵𝑈)
3329, 31, 32chvarfv 2225 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
34 eqid 2724 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3510, 11, 17, 34fvmptf 7009 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑈) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3626, 33, 35syl2anc 583 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
37 climfveqmpt3.s . . . . . 6 (𝜑𝑍𝐶)
3837adantr 480 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐶)
3938, 25sseldd 3975 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
4022, 33eqeltrrd 2826 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑈)
41 eqid 2724 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
4210, 12, 18, 41fvmptf 7009 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑈) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4339, 40, 42syl2anc 583 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4422, 36, 433eqtr4d 2774 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
451, 3, 5, 6, 44climfveq 44870 1 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  Vcvv 3466  csb 3885  wss 3940  cmpt 5221  cfv 6533  cz 12555  cuz 12819  cli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429
This theorem is referenced by:  smflimmpt  46011
  Copyright terms: Public domain W3C validator