Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climeldmeqmpt3 | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 43209 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climeldmeqmpt3.k | ⊢ Ⅎ𝑘𝜑 |
climeldmeqmpt3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climeldmeqmpt3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climeldmeqmpt3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
climeldmeqmpt3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
climeldmeqmpt3.i | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
climeldmeqmpt3.s | ⊢ (𝜑 → 𝑍 ⊆ 𝐶) |
climeldmeqmpt3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) |
climeldmeqmpt3.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
climeldmeqmpt3 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeqmpt3.z | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climeldmeqmpt3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7100 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | climeldmeqmpt3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | 4 | mptexd 7100 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ V) |
6 | climeldmeqmpt3.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | climeldmeqmpt3.k | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
9 | 7, 8 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | nfcsb1v 3857 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
11 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
12 | 11 | nfcsb1 3856 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐷 |
13 | 10, 12 | nfeq 2920 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷 |
14 | 9, 13 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
15 | eleq1w 2821 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | csbeq1a 3846 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
18 | csbeq1a 3846 | . . . . . 6 ⊢ (𝑘 = 𝑗 → 𝐷 = ⦋𝑗 / 𝑘⦌𝐷) | |
19 | 17, 18 | eqeq12d 2754 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 = 𝐷 ↔ ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷)) |
20 | 16, 19 | imbi12d 345 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷))) |
21 | climeldmeqmpt3.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) | |
22 | 14, 20, 21 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
23 | climeldmeqmpt3.i | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
24 | 23 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐴) |
25 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘𝑈 | |
26 | 10, 25 | nfel 2921 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈 |
27 | 9, 26 | nfim 1899 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
28 | 17 | eleq1d 2823 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ 𝑈 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈)) |
29 | 16, 28 | imbi12d 345 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈))) |
30 | climeldmeqmpt3.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) | |
31 | 27, 29, 30 | chvarfv 2233 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) |
32 | 11 | nfcsb1 3856 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
33 | eqid 2738 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
34 | 11, 32, 17, 33 | fvmptf 6896 | . . . 4 ⊢ ((𝑗 ∈ 𝐴 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑈) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
35 | 24, 31, 34 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
36 | climeldmeqmpt3.s | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ 𝐶) | |
37 | 36 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐶) |
38 | 22, 31 | eqeltrrd 2840 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) |
39 | eqid 2738 | . . . . 5 ⊢ (𝑘 ∈ 𝐶 ↦ 𝐷) = (𝑘 ∈ 𝐶 ↦ 𝐷) | |
40 | 11, 12, 18, 39 | fvmptf 6896 | . . . 4 ⊢ ((𝑗 ∈ 𝐶 ∧ ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑈) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
41 | 37, 38, 40 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
42 | 22, 35, 41 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗)) |
43 | 1, 3, 5, 6, 42 | climeldmeq 43206 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Vcvv 3432 ⦋csb 3832 ⊆ wss 3887 ↦ cmpt 5157 dom cdm 5589 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: smflimmpt 44343 |
Copyright terms: Public domain | W3C validator |