Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt3 Structured version   Visualization version   GIF version

Theorem climeldmeqmpt3 42742
 Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 42721 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeldmeqmpt3.k 𝑘𝜑
climeldmeqmpt3.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt3.z 𝑍 = (ℤ𝑀)
climeldmeqmpt3.a (𝜑𝐴𝑉)
climeldmeqmpt3.c (𝜑𝐶𝑊)
climeldmeqmpt3.i (𝜑𝑍𝐴)
climeldmeqmpt3.s (𝜑𝑍𝐶)
climeldmeqmpt3.b ((𝜑𝑘𝑍) → 𝐵𝑈)
climeldmeqmpt3.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt3 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑈,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climeldmeqmpt3
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt3.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt3.a . . 3 (𝜑𝐴𝑉)
32mptexd 6984 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt3.c . . 3 (𝜑𝐶𝑊)
54mptexd 6984 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt3.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt3.k . . . . . 6 𝑘𝜑
8 nfv 1915 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1900 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3831 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2919 . . . . . . 7 𝑘𝑗
1211nfcsb1 3830 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2932 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1897 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2834 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 631 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3821 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3821 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2774 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 348 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt3.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2240 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt3.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3894 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfcv 2919 . . . . . . 7 𝑘𝑈
2610, 25nfel 2933 . . . . . 6 𝑘𝑗 / 𝑘𝐵𝑈
279, 26nfim 1897 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
2817eleq1d 2836 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑈𝑗 / 𝑘𝐵𝑈))
2916, 28imbi12d 348 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵𝑈) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)))
30 climeldmeqmpt3.b . . . . 5 ((𝜑𝑘𝑍) → 𝐵𝑈)
3127, 29, 30chvarfv 2240 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑈)
3211nfcsb1 3830 . . . . 5 𝑘𝑗 / 𝑘𝐵
33 eqid 2758 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3411, 32, 17, 33fvmptf 6785 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑈) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3524, 31, 34syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
36 climeldmeqmpt3.s . . . . 5 (𝜑𝑍𝐶)
3736sselda 3894 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
3822, 31eqeltrrd 2853 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑈)
39 eqid 2758 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
4011, 12, 18, 39fvmptf 6785 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑈) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4137, 38, 40syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
4222, 35, 413eqtr4d 2803 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
431, 3, 5, 6, 42climeldmeq 42718 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  Vcvv 3409  ⦋csb 3807   ⊆ wss 3860   ↦ cmpt 5116  dom cdm 5528  ‘cfv 6340  ℤcz 12033  ℤ≥cuz 12295   ⇝ cli 14902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906 This theorem is referenced by:  smflimmpt  43852
 Copyright terms: Public domain W3C validator