Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt Structured version   Visualization version   GIF version

Theorem climeldmeqmpt 45639
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeqmpt.k 𝑘𝜑
climeldmeqmpt.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt.z 𝑍 = (ℤ𝑀)
climeldmeqmpt.a (𝜑𝐴𝑅)
climeldmeqmpt.i (𝜑𝑍𝐴)
climeldmeqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climeldmeqmpt.t (𝜑𝐶𝑆)
climeldmeqmpt.l (𝜑𝑍𝐶)
climeldmeqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climeldmeqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climeldmeqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt.a . . 3 (𝜑𝐴𝑅)
32mptexd 7180 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 7180 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1914 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1899 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3883 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2891 . . . . . . 7 𝑘𝑗
1211nfcsb1 3882 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2905 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1896 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2811 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3873 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3873 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2745 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2241 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3943 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐴
267, 25nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐴)
27 nfcv 2891 . . . . . . . 8 𝑘𝑉
2810, 27nfel 2906 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
2926, 28nfim 1896 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
30 eleq1w 2811 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3130anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3217eleq1d 2813 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3331, 32imbi12d 344 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
34 climeldmeqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3529, 33, 34chvarfv 2241 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
3624, 35syldan 591 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑉)
3711nfcsb1 3882 . . . . 5 𝑘𝑗 / 𝑘𝐵
38 eqid 2729 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3911, 37, 17, 38fvmptf 6971 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4024, 36, 39syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
41 climeldmeqmpt.l . . . . 5 (𝜑𝑍𝐶)
4241sselda 3943 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
43 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐶
447, 43nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐶)
45 nfcv 2891 . . . . . . . 8 𝑘𝑊
4612, 45nfel 2906 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
4744, 46nfim 1896 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
48 eleq1w 2811 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
4948anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5018eleq1d 2813 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5149, 50imbi12d 344 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
52 climeldmeqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5347, 51, 52chvarfv 2241 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
5442, 53syldan 591 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑊)
55 eqid 2729 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5611, 12, 18, 55fvmptf 6971 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5742, 54, 56syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5822, 40, 573eqtr4d 2774 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
591, 3, 5, 6, 58climeldmeq 45636 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3444  csb 3859  wss 3911  cmpt 5183  dom cdm 5631  cfv 6499  cz 12505  cuz 12769  cli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430
This theorem is referenced by:  fnlimfvre  45645  smflimsuplem4  46794
  Copyright terms: Public domain W3C validator