Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt Structured version   Visualization version   GIF version

Theorem climeldmeqmpt 40790
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeqmpt.k 𝑘𝜑
climeldmeqmpt.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt.z 𝑍 = (ℤ𝑀)
climeldmeqmpt.a (𝜑𝐴𝑅)
climeldmeqmpt.i (𝜑𝑍𝐴)
climeldmeqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climeldmeqmpt.t (𝜑𝐶𝑆)
climeldmeqmpt.l (𝜑𝑍𝐶)
climeldmeqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climeldmeqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climeldmeqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt.a . . 3 (𝜑𝐴𝑅)
32mptexd 6759 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 6759 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1957 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1946 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3766 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2933 . . . . . . 7 𝑘𝑗
1211nfcsb1 3765 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2944 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1943 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2841 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 622 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3759 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3759 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2792 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 336 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvar 2359 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3820 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfv 1957 . . . . . . . 8 𝑘 𝑗𝐴
267, 25nfan 1946 . . . . . . 7 𝑘(𝜑𝑗𝐴)
27 nfcv 2933 . . . . . . . 8 𝑘𝑉
2810, 27nfel 2945 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
2926, 28nfim 1943 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
30 eleq1w 2841 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3130anbi2d 622 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3217eleq1d 2843 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3331, 32imbi12d 336 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
34 climeldmeqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3529, 33, 34chvar 2359 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
3624, 35syldan 585 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑉)
3711nfcsb1 3765 . . . . 5 𝑘𝑗 / 𝑘𝐵
38 eqid 2777 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3911, 37, 17, 38fvmptf 6562 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4024, 36, 39syl2anc 579 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
41 climeldmeqmpt.l . . . . 5 (𝜑𝑍𝐶)
4241sselda 3820 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
43 nfv 1957 . . . . . . . 8 𝑘 𝑗𝐶
447, 43nfan 1946 . . . . . . 7 𝑘(𝜑𝑗𝐶)
45 nfcv 2933 . . . . . . . 8 𝑘𝑊
4612, 45nfel 2945 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
4744, 46nfim 1943 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
48 eleq1w 2841 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
4948anbi2d 622 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5018eleq1d 2843 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5149, 50imbi12d 336 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
52 climeldmeqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5347, 51, 52chvar 2359 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
5442, 53syldan 585 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑊)
55 eqid 2777 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5611, 12, 18, 55fvmptf 6562 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5742, 54, 56syl2anc 579 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5822, 40, 573eqtr4d 2823 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
591, 3, 5, 6, 58climeldmeq 40787 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wnf 1827  wcel 2106  Vcvv 3397  csb 3750  wss 3791  cmpt 4965  dom cdm 5355  cfv 6135  cz 11728  cuz 11992  cli 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627
This theorem is referenced by:  fnlimfvre  40796  smflimsuplem4  41938
  Copyright terms: Public domain W3C validator