Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt Structured version   Visualization version   GIF version

Theorem climeldmeqmpt 45649
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeqmpt.k 𝑘𝜑
climeldmeqmpt.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt.z 𝑍 = (ℤ𝑀)
climeldmeqmpt.a (𝜑𝐴𝑅)
climeldmeqmpt.i (𝜑𝑍𝐴)
climeldmeqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climeldmeqmpt.t (𝜑𝐶𝑆)
climeldmeqmpt.l (𝜑𝑍𝐶)
climeldmeqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climeldmeqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climeldmeqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt.a . . 3 (𝜑𝐴𝑅)
32mptexd 7160 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 7160 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1914 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1899 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3875 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2891 . . . . . . 7 𝑘𝑗
1211nfcsb1 3874 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2905 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1896 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2811 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3865 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3865 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2745 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 344 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2241 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3935 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐴
267, 25nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐴)
27 nfcv 2891 . . . . . . . 8 𝑘𝑉
2810, 27nfel 2906 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
2926, 28nfim 1896 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
30 eleq1w 2811 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3130anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3217eleq1d 2813 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3331, 32imbi12d 344 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
34 climeldmeqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3529, 33, 34chvarfv 2241 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
3624, 35syldan 591 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑉)
3711nfcsb1 3874 . . . . 5 𝑘𝑗 / 𝑘𝐵
38 eqid 2729 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3911, 37, 17, 38fvmptf 6951 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4024, 36, 39syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
41 climeldmeqmpt.l . . . . 5 (𝜑𝑍𝐶)
4241sselda 3935 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
43 nfv 1914 . . . . . . . 8 𝑘 𝑗𝐶
447, 43nfan 1899 . . . . . . 7 𝑘(𝜑𝑗𝐶)
45 nfcv 2891 . . . . . . . 8 𝑘𝑊
4612, 45nfel 2906 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
4744, 46nfim 1896 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
48 eleq1w 2811 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
4948anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5018eleq1d 2813 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5149, 50imbi12d 344 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
52 climeldmeqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5347, 51, 52chvarfv 2241 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
5442, 53syldan 591 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑊)
55 eqid 2729 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5611, 12, 18, 55fvmptf 6951 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5742, 54, 56syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5822, 40, 573eqtr4d 2774 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
591, 3, 5, 6, 58climeldmeq 45646 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3436  csb 3851  wss 3903  cmpt 5173  dom cdm 5619  cfv 6482  cz 12471  cuz 12735  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395
This theorem is referenced by:  fnlimfvre  45655  smflimsuplem4  46804
  Copyright terms: Public domain W3C validator