Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeldmeqmpt Structured version   Visualization version   GIF version

Theorem climeldmeqmpt 42751
Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climeldmeqmpt.k 𝑘𝜑
climeldmeqmpt.m (𝜑𝑀 ∈ ℤ)
climeldmeqmpt.z 𝑍 = (ℤ𝑀)
climeldmeqmpt.a (𝜑𝐴𝑅)
climeldmeqmpt.i (𝜑𝑍𝐴)
climeldmeqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climeldmeqmpt.t (𝜑𝐶𝑆)
climeldmeqmpt.l (𝜑𝑍𝐶)
climeldmeqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climeldmeqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climeldmeqmpt (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climeldmeqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climeldmeqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climeldmeqmpt.a . . 3 (𝜑𝐴𝑅)
32mptexd 6997 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climeldmeqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 6997 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climeldmeqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climeldmeqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1921 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1906 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcsb1v 3814 . . . . . 6 𝑘𝑗 / 𝑘𝐵
11 nfcv 2899 . . . . . . 7 𝑘𝑗
1211nfcsb1 3813 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1310, 12nfeq 2912 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1903 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2815 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 632 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3804 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3804 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2754 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 348 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climeldmeqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2242 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climeldmeqmpt.i . . . . 5 (𝜑𝑍𝐴)
2423sselda 3877 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
25 nfv 1921 . . . . . . . 8 𝑘 𝑗𝐴
267, 25nfan 1906 . . . . . . 7 𝑘(𝜑𝑗𝐴)
27 nfcv 2899 . . . . . . . 8 𝑘𝑉
2810, 27nfel 2913 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
2926, 28nfim 1903 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
30 eleq1w 2815 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3130anbi2d 632 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3217eleq1d 2817 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3331, 32imbi12d 348 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
34 climeldmeqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3529, 33, 34chvarfv 2242 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
3624, 35syldan 594 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵𝑉)
3711nfcsb1 3813 . . . . 5 𝑘𝑗 / 𝑘𝐵
38 eqid 2738 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3911, 37, 17, 38fvmptf 6796 . . . 4 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4024, 36, 39syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
41 climeldmeqmpt.l . . . . 5 (𝜑𝑍𝐶)
4241sselda 3877 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
43 nfv 1921 . . . . . . . 8 𝑘 𝑗𝐶
447, 43nfan 1906 . . . . . . 7 𝑘(𝜑𝑗𝐶)
45 nfcv 2899 . . . . . . . 8 𝑘𝑊
4612, 45nfel 2913 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
4744, 46nfim 1903 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
48 eleq1w 2815 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
4948anbi2d 632 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5018eleq1d 2817 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5149, 50imbi12d 348 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
52 climeldmeqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5347, 51, 52chvarfv 2242 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
5442, 53syldan 594 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐷𝑊)
55 eqid 2738 . . . . 5 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5611, 12, 18, 55fvmptf 6796 . . . 4 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5742, 54, 56syl2anc 587 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
5822, 40, 573eqtr4d 2783 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
591, 3, 5, 6, 58climeldmeq 42748 1 (𝜑 → ((𝑘𝐴𝐵) ∈ dom ⇝ ↔ (𝑘𝐶𝐷) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wnf 1790  wcel 2114  Vcvv 3398  csb 3790  wss 3843  cmpt 5110  dom cdm 5525  cfv 6339  cz 12062  cuz 12324  cli 14931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935
This theorem is referenced by:  fnlimfvre  42757  smflimsuplem4  43895
  Copyright terms: Public domain W3C validator