Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt Structured version   Visualization version   GIF version

Theorem climfveqmpt 43219
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveqmpt.k 𝑘𝜑
climfveqmpt.m (𝜑𝑀 ∈ ℤ)
climfveqmpt.z 𝑍 = (ℤ𝑀)
climfveqmpt.A (𝜑𝐴𝑅)
climfveqmpt.i (𝜑𝑍𝐴)
climfveqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climfveqmpt.t (𝜑𝐶𝑆)
climfveqmpt.l (𝜑𝑍𝐶)
climfveqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climfveqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climfveqmpt (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climfveqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climfveqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climfveqmpt.A . . 3 (𝜑𝐴𝑅)
32mptexd 7109 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climfveqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 7109 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climfveqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climfveqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1918 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1903 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcv 2908 . . . . . . 7 𝑘𝑗
1110nfcsb1 3857 . . . . . 6 𝑘𝑗 / 𝑘𝐵
1210nfcsb1 3857 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1311, 12nfeq 2921 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1900 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2822 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 629 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3847 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3847 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2755 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 345 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climfveqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2234 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climfveqmpt.i . . . . . 6 (𝜑𝑍𝐴)
2423adantr 481 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐴)
25 simpr 485 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2624, 25sseldd 3923 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
27 simpr 485 . . . . 5 ((𝜑𝑗𝐴) → 𝑗𝐴)
28 nfv 1918 . . . . . . . 8 𝑘 𝑗𝐴
297, 28nfan 1903 . . . . . . 7 𝑘(𝜑𝑗𝐴)
30 nfcv 2908 . . . . . . . 8 𝑘𝑉
3111, 30nfel 2922 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
3229, 31nfim 1900 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
33 eleq1w 2822 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3433anbi2d 629 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3517eleq1d 2824 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3634, 35imbi12d 345 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
37 climfveqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3832, 36, 37chvarfv 2234 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
39 eqid 2739 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4010, 11, 17, 39fvmptf 6905 . . . . 5 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4127, 38, 40syl2anc 584 . . . 4 ((𝜑𝑗𝐴) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4226, 41syldan 591 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
43 climfveqmpt.l . . . . . 6 (𝜑𝑍𝐶)
4443adantr 481 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐶)
4544, 25sseldd 3923 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
46 simpr 485 . . . . 5 ((𝜑𝑗𝐶) → 𝑗𝐶)
47 nfv 1918 . . . . . . . 8 𝑘 𝑗𝐶
487, 47nfan 1903 . . . . . . 7 𝑘(𝜑𝑗𝐶)
49 nfcv 2908 . . . . . . . 8 𝑘𝑊
5012, 49nfel 2922 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
5148, 50nfim 1900 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
52 eleq1w 2822 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
5352anbi2d 629 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5418eleq1d 2824 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5553, 54imbi12d 345 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
56 climfveqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5751, 55, 56chvarfv 2234 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
58 eqid 2739 . . . . . 6 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5910, 12, 18, 58fvmptf 6905 . . . . 5 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6046, 57, 59syl2anc 584 . . . 4 ((𝜑𝑗𝐶) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6145, 60syldan 591 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6222, 42, 613eqtr4d 2789 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
631, 3, 5, 6, 62climfveq 43217 1 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2107  Vcvv 3433  csb 3833  wss 3888  cmpt 5158  cfv 6437  cz 12328  cuz 12591  cli 15202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206
This theorem is referenced by:  fnlimfvre  43222
  Copyright terms: Public domain W3C validator