Step | Hyp | Ref
| Expression |
1 | | climfveqmpt.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | climfveqmpt.A |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑅) |
3 | 2 | mptexd 7109 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | | climfveqmpt.t |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑆) |
5 | 4 | mptexd 7109 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ V) |
6 | | climfveqmpt.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | climfveqmpt.k |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
8 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
9 | 7, 8 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
10 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑘𝑗 |
11 | 10 | nfcsb1 3857 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
12 | 10 | nfcsb1 3857 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐷 |
13 | 11, 12 | nfeq 2921 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷 |
14 | 9, 13 | nfim 1900 |
. . . 4
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
15 | | eleq1w 2822 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
16 | 15 | anbi2d 629 |
. . . . 5
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | | csbeq1a 3847 |
. . . . . 6
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
18 | | csbeq1a 3847 |
. . . . . 6
⊢ (𝑘 = 𝑗 → 𝐷 = ⦋𝑗 / 𝑘⦌𝐷) |
19 | 17, 18 | eqeq12d 2755 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐵 = 𝐷 ↔ ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷)) |
20 | 16, 19 | imbi12d 345 |
. . . 4
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷))) |
21 | | climfveqmpt.e |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) |
22 | 14, 20, 21 | chvarfv 2234 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑗 / 𝑘⦌𝐷) |
23 | | climfveqmpt.i |
. . . . . 6
⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐴) |
25 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
26 | 24, 25 | sseldd 3923 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐴) |
27 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) |
28 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
29 | 7, 28 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
30 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑉 |
31 | 11, 30 | nfel 2922 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉 |
32 | 29, 31 | nfim 1900 |
. . . . . 6
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉) |
33 | | eleq1w 2822 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
34 | 33 | anbi2d 629 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
35 | 17 | eleq1d 2824 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝐵 ∈ 𝑉 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉)) |
36 | 34, 35 | imbi12d 345 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉))) |
37 | | climfveqmpt.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
38 | 32, 36, 37 | chvarfv 2234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉) |
39 | | eqid 2739 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
40 | 10, 11, 17, 39 | fvmptf 6905 |
. . . . 5
⊢ ((𝑗 ∈ 𝐴 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑉) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
41 | 27, 38, 40 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
42 | 26, 41 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
43 | | climfveqmpt.l |
. . . . . 6
⊢ (𝜑 → 𝑍 ⊆ 𝐶) |
44 | 43 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑍 ⊆ 𝐶) |
45 | 44, 25 | sseldd 3923 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝐶) |
46 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐶) → 𝑗 ∈ 𝐶) |
47 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑗 ∈ 𝐶 |
48 | 7, 47 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐶) |
49 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑊 |
50 | 12, 49 | nfel 2922 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊 |
51 | 48, 50 | nfim 1900 |
. . . . . 6
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐶) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊) |
52 | | eleq1w 2822 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐶 ↔ 𝑗 ∈ 𝐶)) |
53 | 52 | anbi2d 629 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐶) ↔ (𝜑 ∧ 𝑗 ∈ 𝐶))) |
54 | 18 | eleq1d 2824 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝐷 ∈ 𝑊 ↔ ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊)) |
55 | 53, 54 | imbi12d 345 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐶) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊))) |
56 | | climfveqmpt.c |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) |
57 | 51, 55, 56 | chvarfv 2234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐶) → ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊) |
58 | | eqid 2739 |
. . . . . 6
⊢ (𝑘 ∈ 𝐶 ↦ 𝐷) = (𝑘 ∈ 𝐶 ↦ 𝐷) |
59 | 10, 12, 18, 58 | fvmptf 6905 |
. . . . 5
⊢ ((𝑗 ∈ 𝐶 ∧ ⦋𝑗 / 𝑘⦌𝐷 ∈ 𝑊) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
60 | 46, 57, 59 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐶) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
61 | 45, 60 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐷) |
62 | 22, 42, 61 | 3eqtr4d 2789 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐶 ↦ 𝐷)‘𝑗)) |
63 | 1, 3, 5, 6, 62 | climfveq 43217 |
1
⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) |