Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt Structured version   Visualization version   GIF version

Theorem climfveqmpt 41972
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveqmpt.k 𝑘𝜑
climfveqmpt.m (𝜑𝑀 ∈ ℤ)
climfveqmpt.z 𝑍 = (ℤ𝑀)
climfveqmpt.A (𝜑𝐴𝑅)
climfveqmpt.i (𝜑𝑍𝐴)
climfveqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climfveqmpt.t (𝜑𝐶𝑆)
climfveqmpt.l (𝜑𝑍𝐶)
climfveqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climfveqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climfveqmpt (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climfveqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climfveqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climfveqmpt.A . . 3 (𝜑𝐴𝑅)
32mptexd 6987 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climfveqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 6987 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climfveqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climfveqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1915 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1900 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcv 2977 . . . . . . 7 𝑘𝑗
1110nfcsb1 3906 . . . . . 6 𝑘𝑗 / 𝑘𝐵
1210nfcsb1 3906 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1311, 12nfeq 2991 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1897 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2895 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3897 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3897 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2837 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 347 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climfveqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvarfv 2242 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climfveqmpt.i . . . . . 6 (𝜑𝑍𝐴)
2423adantr 483 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐴)
25 simpr 487 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2624, 25sseldd 3968 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
27 simpr 487 . . . . 5 ((𝜑𝑗𝐴) → 𝑗𝐴)
28 nfv 1915 . . . . . . . 8 𝑘 𝑗𝐴
297, 28nfan 1900 . . . . . . 7 𝑘(𝜑𝑗𝐴)
30 nfcv 2977 . . . . . . . 8 𝑘𝑉
3111, 30nfel 2992 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
3229, 31nfim 1897 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
33 eleq1w 2895 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3433anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3517eleq1d 2897 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3634, 35imbi12d 347 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
37 climfveqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3832, 36, 37chvarfv 2242 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
39 eqid 2821 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4010, 11, 17, 39fvmptf 6789 . . . . 5 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4127, 38, 40syl2anc 586 . . . 4 ((𝜑𝑗𝐴) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4226, 41syldan 593 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
43 climfveqmpt.l . . . . . 6 (𝜑𝑍𝐶)
4443adantr 483 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐶)
4544, 25sseldd 3968 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
46 simpr 487 . . . . 5 ((𝜑𝑗𝐶) → 𝑗𝐶)
47 nfv 1915 . . . . . . . 8 𝑘 𝑗𝐶
487, 47nfan 1900 . . . . . . 7 𝑘(𝜑𝑗𝐶)
49 nfcv 2977 . . . . . . . 8 𝑘𝑊
5012, 49nfel 2992 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
5148, 50nfim 1897 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
52 eleq1w 2895 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
5352anbi2d 630 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5418eleq1d 2897 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5553, 54imbi12d 347 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
56 climfveqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5751, 55, 56chvarfv 2242 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
58 eqid 2821 . . . . . 6 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5910, 12, 18, 58fvmptf 6789 . . . . 5 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6046, 57, 59syl2anc 586 . . . 4 ((𝜑𝑗𝐶) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6145, 60syldan 593 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6222, 42, 613eqtr4d 2866 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
631, 3, 5, 6, 62climfveq 41970 1 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  Vcvv 3494  csb 3883  wss 3936  cmpt 5146  cfv 6355  cz 11982  cuz 12244  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by:  fnlimfvre  41975
  Copyright terms: Public domain W3C validator