Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt Structured version   Visualization version   GIF version

Theorem climfveqmpt 40421
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveqmpt.k 𝑘𝜑
climfveqmpt.m (𝜑𝑀 ∈ ℤ)
climfveqmpt.z 𝑍 = (ℤ𝑀)
climfveqmpt.A (𝜑𝐴𝑅)
climfveqmpt.i (𝜑𝑍𝐴)
climfveqmpt.b ((𝜑𝑘𝐴) → 𝐵𝑉)
climfveqmpt.t (𝜑𝐶𝑆)
climfveqmpt.l (𝜑𝑍𝐶)
climfveqmpt.c ((𝜑𝑘𝐶) → 𝐷𝑊)
climfveqmpt.e ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
Assertion
Ref Expression
climfveqmpt (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)   𝑅(𝑘)   𝑆(𝑘)   𝑀(𝑘)

Proof of Theorem climfveqmpt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climfveqmpt.z . 2 𝑍 = (ℤ𝑀)
2 climfveqmpt.A . . 3 (𝜑𝐴𝑅)
32mptexd 6631 . 2 (𝜑 → (𝑘𝐴𝐵) ∈ V)
4 climfveqmpt.t . . 3 (𝜑𝐶𝑆)
54mptexd 6631 . 2 (𝜑 → (𝑘𝐶𝐷) ∈ V)
6 climfveqmpt.m . 2 (𝜑𝑀 ∈ ℤ)
7 climfveqmpt.k . . . . . 6 𝑘𝜑
8 nfv 1995 . . . . . 6 𝑘 𝑗𝑍
97, 8nfan 1980 . . . . 5 𝑘(𝜑𝑗𝑍)
10 nfcv 2913 . . . . . . 7 𝑘𝑗
1110nfcsb1 3697 . . . . . 6 𝑘𝑗 / 𝑘𝐵
1210nfcsb1 3697 . . . . . 6 𝑘𝑗 / 𝑘𝐷
1311, 12nfeq 2925 . . . . 5 𝑘𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷
149, 13nfim 1977 . . . 4 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
15 eleq1w 2833 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1615anbi2d 614 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
17 csbeq1a 3691 . . . . . 6 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
18 csbeq1a 3691 . . . . . 6 (𝑘 = 𝑗𝐷 = 𝑗 / 𝑘𝐷)
1917, 18eqeq12d 2786 . . . . 5 (𝑘 = 𝑗 → (𝐵 = 𝐷𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷))
2016, 19imbi12d 333 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 = 𝐷) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)))
21 climfveqmpt.e . . . 4 ((𝜑𝑘𝑍) → 𝐵 = 𝐷)
2214, 20, 21chvar 2424 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐵 = 𝑗 / 𝑘𝐷)
23 climfveqmpt.i . . . . . 6 (𝜑𝑍𝐴)
2423adantr 466 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐴)
25 simpr 471 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2624, 25sseldd 3753 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐴)
27 simpr 471 . . . . 5 ((𝜑𝑗𝐴) → 𝑗𝐴)
28 nfv 1995 . . . . . . . 8 𝑘 𝑗𝐴
297, 28nfan 1980 . . . . . . 7 𝑘(𝜑𝑗𝐴)
30 nfcv 2913 . . . . . . . 8 𝑘𝑉
3111, 30nfel 2926 . . . . . . 7 𝑘𝑗 / 𝑘𝐵𝑉
3229, 31nfim 1977 . . . . . 6 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
33 eleq1w 2833 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
3433anbi2d 614 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
3517eleq1d 2835 . . . . . . 7 (𝑘 = 𝑗 → (𝐵𝑉𝑗 / 𝑘𝐵𝑉))
3634, 35imbi12d 333 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵𝑉) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)))
37 climfveqmpt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑉)
3832, 36, 37chvar 2424 . . . . 5 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑉)
39 eqid 2771 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4010, 11, 17, 39fvmptf 6443 . . . . 5 ((𝑗𝐴𝑗 / 𝑘𝐵𝑉) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4127, 38, 40syl2anc 573 . . . 4 ((𝜑𝑗𝐴) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
4226, 41syldan 579 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
43 climfveqmpt.l . . . . . 6 (𝜑𝑍𝐶)
4443adantr 466 . . . . 5 ((𝜑𝑗𝑍) → 𝑍𝐶)
4544, 25sseldd 3753 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝐶)
46 simpr 471 . . . . 5 ((𝜑𝑗𝐶) → 𝑗𝐶)
47 nfv 1995 . . . . . . . 8 𝑘 𝑗𝐶
487, 47nfan 1980 . . . . . . 7 𝑘(𝜑𝑗𝐶)
49 nfcv 2913 . . . . . . . 8 𝑘𝑊
5012, 49nfel 2926 . . . . . . 7 𝑘𝑗 / 𝑘𝐷𝑊
5148, 50nfim 1977 . . . . . 6 𝑘((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
52 eleq1w 2833 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝐶𝑗𝐶))
5352anbi2d 614 . . . . . . 7 (𝑘 = 𝑗 → ((𝜑𝑘𝐶) ↔ (𝜑𝑗𝐶)))
5418eleq1d 2835 . . . . . . 7 (𝑘 = 𝑗 → (𝐷𝑊𝑗 / 𝑘𝐷𝑊))
5553, 54imbi12d 333 . . . . . 6 (𝑘 = 𝑗 → (((𝜑𝑘𝐶) → 𝐷𝑊) ↔ ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)))
56 climfveqmpt.c . . . . . 6 ((𝜑𝑘𝐶) → 𝐷𝑊)
5751, 55, 56chvar 2424 . . . . 5 ((𝜑𝑗𝐶) → 𝑗 / 𝑘𝐷𝑊)
58 eqid 2771 . . . . . 6 (𝑘𝐶𝐷) = (𝑘𝐶𝐷)
5910, 12, 18, 58fvmptf 6443 . . . . 5 ((𝑗𝐶𝑗 / 𝑘𝐷𝑊) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6046, 57, 59syl2anc 573 . . . 4 ((𝜑𝑗𝐶) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6145, 60syldan 579 . . 3 ((𝜑𝑗𝑍) → ((𝑘𝐶𝐷)‘𝑗) = 𝑗 / 𝑘𝐷)
6222, 42, 613eqtr4d 2815 . 2 ((𝜑𝑗𝑍) → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐶𝐷)‘𝑗))
631, 3, 5, 6, 62climfveq 40419 1 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐵)) = ( ⇝ ‘(𝑘𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wnf 1856  wcel 2145  Vcvv 3351  csb 3682  wss 3723  cmpt 4863  cfv 6031  cz 11579  cuz 11888  cli 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427
This theorem is referenced by:  fnlimfvre  40424
  Copyright terms: Public domain W3C validator