Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lempt | Structured version Visualization version GIF version |
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0lempt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0lempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0lempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0lempt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0lempt.le | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
sge0lempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0lempt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0lempt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0lempt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 6991 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0lempt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | 2, 6, 7 | fmptdf 6991 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
9 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
10 | 2, 9 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
11 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
12 | 11 | nfcsb1 3856 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
13 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
14 | 11 | nfcsb1 3856 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
15 | 12, 13, 14 | nfbr 5121 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶 |
16 | 10, 15 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
17 | eleq1w 2821 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 629 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | csbeq1a 3846 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
20 | csbeq1a 3846 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
21 | 19, 20 | breq12d 5087 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ≤ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
22 | 18, 21 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶))) |
23 | sge0lempt.le | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
24 | 16, 22, 23 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
25 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
26 | 12 | nfel1 2923 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞) |
27 | 10, 26 | nfim 1899 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
28 | 19 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞))) |
29 | 18, 28 | imbi12d 345 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)))) |
30 | 27, 29, 3 | chvarfv 2233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
31 | 11, 12, 19, 4 | fvmptf 6896 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
33 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥(0[,]+∞) | |
34 | 14, 33 | nfel 2921 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞) |
35 | 10, 34 | nfim 1899 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
36 | 20 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞))) |
37 | 18, 36 | imbi12d 345 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)))) |
38 | 35, 37, 6 | chvarfv 2233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
39 | 11, 14, 20, 7 | fvmptf 6896 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
40 | 25, 38, 39 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
41 | 32, 40 | breq12d 5087 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
42 | 24, 41 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
43 | 1, 5, 8, 42 | sge0le 43945 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ⦋csb 3832 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ≤ cle 11010 [,]cicc 13082 Σ^csumge0 43900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-sumge0 43901 |
This theorem is referenced by: sge0iunmptlemre 43953 sge0xadd 43973 meaiunlelem 44006 hoicvrrex 44094 ovnsubaddlem1 44108 sge0hsphoire 44127 hoidmv1lelem1 44129 hoidmv1lelem2 44130 hoidmv1lelem3 44131 hoidmvlelem1 44133 hoidmvlelem2 44134 hoidmvlelem4 44136 hspmbllem2 44165 ovolval5lem1 44190 |
Copyright terms: Public domain | W3C validator |