Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lempt Structured version   Visualization version   GIF version

Theorem sge0lempt 46331
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lempt.xph 𝑥𝜑
sge0lempt.a (𝜑𝐴𝑉)
sge0lempt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0lempt.c ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0lempt.le ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
sge0lempt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sge0lempt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0lempt.a . 2 (𝜑𝐴𝑉)
2 sge0lempt.xph . . 3 𝑥𝜑
3 sge0lempt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2740 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 7151 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0lempt.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
7 eqid 2740 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82, 6, 7fmptdf 7151 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(0[,]+∞))
9 nfv 1913 . . . . . 6 𝑥 𝑦𝐴
102, 9nfan 1898 . . . . 5 𝑥(𝜑𝑦𝐴)
11 nfcv 2908 . . . . . . 7 𝑥𝑦
1211nfcsb1 3945 . . . . . 6 𝑥𝑦 / 𝑥𝐵
13 nfcv 2908 . . . . . 6 𝑥
1411nfcsb1 3945 . . . . . 6 𝑥𝑦 / 𝑥𝐶
1512, 13, 14nfbr 5213 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶
1610, 15nfim 1895 . . . 4 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
17 eleq1w 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
19 csbeq1a 3935 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
20 csbeq1a 3935 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
2119, 20breq12d 5179 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
2218, 21imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝐶) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)))
23 sge0lempt.le . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
2416, 22, 23chvarfv 2241 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
25 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
2612nfel1 2925 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ (0[,]+∞)
2710, 26nfim 1895 . . . . . 6 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
2819eleq1d 2829 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐵 ∈ (0[,]+∞)))
2918, 28imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))))
3027, 29, 3chvarfv 2241 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
3111, 12, 19, 4fvmptf 7050 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐵 ∈ (0[,]+∞)) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
3225, 30, 31syl2anc 583 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
33 nfcv 2908 . . . . . . . 8 𝑥(0[,]+∞)
3414, 33nfel 2923 . . . . . . 7 𝑥𝑦 / 𝑥𝐶 ∈ (0[,]+∞)
3510, 34nfim 1895 . . . . . 6 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
3620eleq1d 2829 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐶 ∈ (0[,]+∞)))
3718, 36imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))))
3835, 37, 6chvarfv 2241 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
3911, 14, 20, 7fvmptf 7050 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐶 ∈ (0[,]+∞)) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4025, 38, 39syl2anc 583 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4132, 40breq12d 5179 . . 3 ((𝜑𝑦𝐴) → (((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦) ↔ 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
4224, 41mpbird 257 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦))
431, 5, 8, 42sge0le 46328 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  csb 3921   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  cle 11325  [,]cicc 13410  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  sge0iunmptlemre  46336  sge0xadd  46356  meaiunlelem  46389  hoicvrrex  46477  ovnsubaddlem1  46491  sge0hsphoire  46510  hoidmv1lelem1  46512  hoidmv1lelem2  46513  hoidmv1lelem3  46514  hoidmvlelem1  46516  hoidmvlelem2  46517  hoidmvlelem4  46519  hspmbllem2  46548  ovolval5lem1  46573
  Copyright terms: Public domain W3C validator