Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lempt Structured version   Visualization version   GIF version

Theorem sge0lempt 46411
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lempt.xph 𝑥𝜑
sge0lempt.a (𝜑𝐴𝑉)
sge0lempt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0lempt.c ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
sge0lempt.le ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
sge0lempt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sge0lempt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0lempt.a . 2 (𝜑𝐴𝑉)
2 sge0lempt.xph . . 3 𝑥𝜑
3 sge0lempt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2729 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 7055 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
6 sge0lempt.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
7 eqid 2729 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
82, 6, 7fmptdf 7055 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(0[,]+∞))
9 nfv 1914 . . . . . 6 𝑥 𝑦𝐴
102, 9nfan 1899 . . . . 5 𝑥(𝜑𝑦𝐴)
11 nfcv 2891 . . . . . . 7 𝑥𝑦
1211nfcsb1 3876 . . . . . 6 𝑥𝑦 / 𝑥𝐵
13 nfcv 2891 . . . . . 6 𝑥
1411nfcsb1 3876 . . . . . 6 𝑥𝑦 / 𝑥𝐶
1512, 13, 14nfbr 5142 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶
1610, 15nfim 1896 . . . 4 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
17 eleq1w 2811 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
19 csbeq1a 3867 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
20 csbeq1a 3867 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
2119, 20breq12d 5108 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
2218, 21imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝐶) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)))
23 sge0lempt.le . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
2416, 22, 23chvarfv 2241 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
25 simpr 484 . . . . 5 ((𝜑𝑦𝐴) → 𝑦𝐴)
2612nfel1 2908 . . . . . . 7 𝑥𝑦 / 𝑥𝐵 ∈ (0[,]+∞)
2710, 26nfim 1896 . . . . . 6 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
2819eleq1d 2813 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐵 ∈ (0[,]+∞)))
2918, 28imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))))
3027, 29, 3chvarfv 2241 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ (0[,]+∞))
3111, 12, 19, 4fvmptf 6955 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐵 ∈ (0[,]+∞)) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
3225, 30, 31syl2anc 584 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = 𝑦 / 𝑥𝐵)
33 nfcv 2891 . . . . . . . 8 𝑥(0[,]+∞)
3414, 33nfel 2906 . . . . . . 7 𝑥𝑦 / 𝑥𝐶 ∈ (0[,]+∞)
3510, 34nfim 1896 . . . . . 6 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
3620eleq1d 2813 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ 𝑦 / 𝑥𝐶 ∈ (0[,]+∞)))
3718, 36imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))))
3835, 37, 6chvarfv 2241 . . . . 5 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐶 ∈ (0[,]+∞))
3911, 14, 20, 7fvmptf 6955 . . . . 5 ((𝑦𝐴𝑦 / 𝑥𝐶 ∈ (0[,]+∞)) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4025, 38, 39syl2anc 584 . . . 4 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝑦 / 𝑥𝐶)
4132, 40breq12d 5108 . . 3 ((𝜑𝑦𝐴) → (((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦) ↔ 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
4224, 41mpbird 257 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) ≤ ((𝑥𝐴𝐶)‘𝑦))
431, 5, 8, 42sge0le 46408 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ≤ (Σ^‘(𝑥𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  csb 3853   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  0cc0 11028  +∞cpnf 11165  cle 11169  [,]cicc 13270  Σ^csumge0 46363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-sumge0 46364
This theorem is referenced by:  sge0iunmptlemre  46416  sge0xadd  46436  meaiunlelem  46469  hoicvrrex  46557  ovnsubaddlem1  46571  sge0hsphoire  46590  hoidmv1lelem1  46592  hoidmv1lelem2  46593  hoidmv1lelem3  46594  hoidmvlelem1  46596  hoidmvlelem2  46597  hoidmvlelem4  46599  hspmbllem2  46628  ovolval5lem1  46653
  Copyright terms: Public domain W3C validator