| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lempt | Structured version Visualization version GIF version | ||
| Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0lempt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0lempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0lempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0lempt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| sge0lempt.le | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| sge0lempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0lempt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0lempt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0lempt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7045 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0lempt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 7 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 8 | 2, 6, 7 | fmptdf 7045 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
| 9 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 10 | 2, 9 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
| 11 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 12 | 11 | nfcsb1 3868 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 13 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
| 14 | 11 | nfcsb1 3868 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 15 | 12, 13, 14 | nfbr 5133 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶 |
| 16 | 10, 15 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
| 17 | eleq1w 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 19 | csbeq1a 3859 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 20 | csbeq1a 3859 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 21 | 19, 20 | breq12d 5099 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ≤ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
| 22 | 18, 21 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶))) |
| 23 | sge0lempt.le | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
| 24 | 16, 22, 23 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
| 25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 26 | 12 | nfel1 2911 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞) |
| 27 | 10, 26 | nfim 1897 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
| 28 | 19 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞))) |
| 29 | 18, 28 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)))) |
| 30 | 27, 29, 3 | chvarfv 2243 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
| 31 | 11, 12, 19, 4 | fvmptf 6945 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
| 33 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑥(0[,]+∞) | |
| 34 | 14, 33 | nfel 2909 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞) |
| 35 | 10, 34 | nfim 1897 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
| 36 | 20 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞))) |
| 37 | 18, 36 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)))) |
| 38 | 35, 37, 6 | chvarfv 2243 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
| 39 | 11, 14, 20, 7 | fvmptf 6945 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
| 40 | 25, 38, 39 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
| 41 | 32, 40 | breq12d 5099 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
| 42 | 24, 41 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
| 43 | 1, 5, 8, 42 | sge0le 46445 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ⦋csb 3845 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 0cc0 11001 +∞cpnf 11138 ≤ cle 11142 [,]cicc 13243 Σ^csumge0 46400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-sumge0 46401 |
| This theorem is referenced by: sge0iunmptlemre 46453 sge0xadd 46473 meaiunlelem 46506 hoicvrrex 46594 ovnsubaddlem1 46608 sge0hsphoire 46627 hoidmv1lelem1 46629 hoidmv1lelem2 46630 hoidmv1lelem3 46631 hoidmvlelem1 46633 hoidmvlelem2 46634 hoidmvlelem4 46636 hspmbllem2 46665 ovolval5lem1 46690 |
| Copyright terms: Public domain | W3C validator |