| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lempt | Structured version Visualization version GIF version | ||
| Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0lempt.xph | ⊢ Ⅎ𝑥𝜑 |
| sge0lempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sge0lempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0lempt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| sge0lempt.le | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| sge0lempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0lempt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sge0lempt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | sge0lempt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 2, 3, 4 | fmptdf 7071 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 6 | sge0lempt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 7 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 8 | 2, 6, 7 | fmptdf 7071 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 10 | 2, 9 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
| 11 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 12 | 11 | nfcsb1 3882 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 13 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
| 14 | 11 | nfcsb1 3882 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 15 | 12, 13, 14 | nfbr 5149 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶 |
| 16 | 10, 15 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
| 17 | eleq1w 2811 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 19 | csbeq1a 3873 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 20 | csbeq1a 3873 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 21 | 19, 20 | breq12d 5115 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ≤ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
| 22 | 18, 21 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶))) |
| 23 | sge0lempt.le | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
| 24 | 16, 22, 23 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
| 25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 26 | 12 | nfel1 2908 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞) |
| 27 | 10, 26 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
| 28 | 19 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞))) |
| 29 | 18, 28 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)))) |
| 30 | 27, 29, 3 | chvarfv 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
| 31 | 11, 12, 19, 4 | fvmptf 6971 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
| 32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
| 33 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑥(0[,]+∞) | |
| 34 | 14, 33 | nfel 2906 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞) |
| 35 | 10, 34 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
| 36 | 20 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞))) |
| 37 | 18, 36 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)))) |
| 38 | 35, 37, 6 | chvarfv 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
| 39 | 11, 14, 20, 7 | fvmptf 6971 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
| 40 | 25, 38, 39 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
| 41 | 32, 40 | breq12d 5115 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
| 42 | 24, 41 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
| 43 | 1, 5, 8, 42 | sge0le 46378 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⦋csb 3859 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 [,]cicc 13285 Σ^csumge0 46333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-sumge0 46334 |
| This theorem is referenced by: sge0iunmptlemre 46386 sge0xadd 46406 meaiunlelem 46439 hoicvrrex 46527 ovnsubaddlem1 46541 sge0hsphoire 46560 hoidmv1lelem1 46562 hoidmv1lelem2 46563 hoidmv1lelem3 46564 hoidmvlelem1 46566 hoidmvlelem2 46567 hoidmvlelem4 46569 hspmbllem2 46598 ovolval5lem1 46623 |
| Copyright terms: Public domain | W3C validator |