![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lempt | Structured version Visualization version GIF version |
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0lempt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0lempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0lempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0lempt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0lempt.le | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
sge0lempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0lempt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0lempt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0lempt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7137 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0lempt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | 2, 6, 7 | fmptdf 7137 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
9 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
10 | 2, 9 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
11 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
12 | 11 | nfcsb1 3932 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
13 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
14 | 11 | nfcsb1 3932 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
15 | 12, 13, 14 | nfbr 5195 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶 |
16 | 10, 15 | nfim 1894 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
17 | eleq1w 2822 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | csbeq1a 3922 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
20 | csbeq1a 3922 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
21 | 19, 20 | breq12d 5161 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ≤ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
22 | 18, 21 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶))) |
23 | sge0lempt.le | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
24 | 16, 22, 23 | chvarfv 2238 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
26 | 12 | nfel1 2920 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞) |
27 | 10, 26 | nfim 1894 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
28 | 19 | eleq1d 2824 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞))) |
29 | 18, 28 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)))) |
30 | 27, 29, 3 | chvarfv 2238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
31 | 11, 12, 19, 4 | fvmptf 7037 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
32 | 25, 30, 31 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
33 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑥(0[,]+∞) | |
34 | 14, 33 | nfel 2918 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞) |
35 | 10, 34 | nfim 1894 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
36 | 20 | eleq1d 2824 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞))) |
37 | 18, 36 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)))) |
38 | 35, 37, 6 | chvarfv 2238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
39 | 11, 14, 20, 7 | fvmptf 7037 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
40 | 25, 38, 39 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
41 | 32, 40 | breq12d 5161 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
42 | 24, 41 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
43 | 1, 5, 8, 42 | sge0le 46363 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ⦋csb 3908 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 0cc0 11153 +∞cpnf 11290 ≤ cle 11294 [,]cicc 13387 Σ^csumge0 46318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-sumge0 46319 |
This theorem is referenced by: sge0iunmptlemre 46371 sge0xadd 46391 meaiunlelem 46424 hoicvrrex 46512 ovnsubaddlem1 46526 sge0hsphoire 46545 hoidmv1lelem1 46547 hoidmv1lelem2 46548 hoidmv1lelem3 46549 hoidmvlelem1 46551 hoidmvlelem2 46552 hoidmvlelem4 46554 hspmbllem2 46583 ovolval5lem1 46608 |
Copyright terms: Public domain | W3C validator |