![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0isummpt2 | Structured version Visualization version GIF version |
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0isummpt2.kph | ⊢ Ⅎ𝑘𝜑 |
sge0isummpt2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) |
sge0isummpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sge0isummpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
sge0isummpt2.b | ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) |
Ref | Expression |
---|---|
sge0isummpt2 | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0isummpt2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | sge0isummpt2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
4 | sge0isummpt2.kph | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1894 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
8 | 7 | nfcsb1 3910 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
9 | 8 | nfel1 2909 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞) |
10 | 6, 9 | nfim 1891 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
11 | eleq1w 2808 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
12 | 11 | anbi2d 628 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
13 | csbeq1a 3900 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
14 | 13 | eleq1d 2810 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ (0[,)+∞) ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞))) |
15 | 12, 14 | imbi12d 343 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)))) |
16 | sge0isummpt2.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) | |
17 | 10, 15, 16 | chvarfv 2228 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
18 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑖𝐴 | |
19 | nfcsb1v 3911 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐴 | |
20 | csbeq1a 3900 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑘⦌𝐴) | |
21 | 18, 19, 20 | cbvmpt 5255 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) |
22 | 21 | eqcomi 2734 | . . . . 5 ⊢ (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
23 | 7, 8, 13, 22 | fvmptf 7019 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
24 | 3, 17, 23 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | rge0ssre 13460 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
26 | ax-resscn 11190 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
27 | 25, 26 | sstri 3983 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
28 | 27, 17 | sselid 3971 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
29 | sge0isummpt2.b | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) | |
30 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) |
31 | 30 | seqeq3d 14001 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) = seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴))) |
32 | 31 | breq1d 5154 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵 ↔ seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵)) |
33 | 29, 32 | mpbid 231 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵) |
34 | 1, 2, 24, 28, 33 | isumclim 15730 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 = 𝐵) |
35 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑗𝑍 | |
36 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘𝑍 | |
37 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
38 | 13, 35, 36, 37, 8 | cbvsum 15668 | . . 3 ⊢ Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 |
39 | 38 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴) |
40 | 4, 16, 2, 1, 29 | sge0isummpt 45877 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) |
41 | 34, 39, 40 | 3eqtr4rd 2776 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ⦋csb 3886 class class class wbr 5144 ↦ cmpt 5227 ‘cfv 6543 (class class class)co 7413 ℂcc 11131 ℝcr 11132 0cc0 11133 + caddc 11136 +∞cpnf 11270 ℤcz 12583 ℤ≥cuz 12847 [,)cico 13353 seqcseq 13993 ⇝ cli 15455 Σcsu 15659 Σ^csumge0 45809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-rlim 15460 df-sum 15660 df-sumge0 45810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |