![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0isummpt2 | Structured version Visualization version GIF version |
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0isummpt2.kph | ⊢ Ⅎ𝑘𝜑 |
sge0isummpt2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) |
sge0isummpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sge0isummpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
sge0isummpt2.b | ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) |
Ref | Expression |
---|---|
sge0isummpt2 | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0isummpt2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | sge0isummpt2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
4 | sge0isummpt2.kph | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
8 | 7 | nfcsb1 3945 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
9 | 8 | nfel1 2925 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞) |
10 | 6, 9 | nfim 1895 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
11 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
12 | 11 | anbi2d 629 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
13 | csbeq1a 3935 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
14 | 13 | eleq1d 2829 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ (0[,)+∞) ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞))) |
15 | 12, 14 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)))) |
16 | sge0isummpt2.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) | |
17 | 10, 15, 16 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
18 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑖𝐴 | |
19 | nfcsb1v 3946 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐴 | |
20 | csbeq1a 3935 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑘⦌𝐴) | |
21 | 18, 19, 20 | cbvmpt 5277 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) |
22 | 21 | eqcomi 2749 | . . . . 5 ⊢ (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
23 | 7, 8, 13, 22 | fvmptf 7050 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
24 | 3, 17, 23 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
25 | rge0ssre 13516 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
26 | ax-resscn 11241 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
27 | 25, 26 | sstri 4018 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
28 | 27, 17 | sselid 4006 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
29 | sge0isummpt2.b | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) | |
30 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) |
31 | 30 | seqeq3d 14060 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) = seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴))) |
32 | 31 | breq1d 5176 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵 ↔ seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵)) |
33 | 29, 32 | mpbid 232 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵) |
34 | 1, 2, 24, 28, 33 | isumclim 15805 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 = 𝐵) |
35 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
36 | 13, 35, 8 | cbvsum 15743 | . . 3 ⊢ Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴) |
38 | 4, 16, 2, 1, 29 | sge0isummpt 46351 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) |
39 | 34, 37, 38 | 3eqtr4rd 2791 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ⦋csb 3921 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 +∞cpnf 11321 ℤcz 12639 ℤ≥cuz 12903 [,)cico 13409 seqcseq 14052 ⇝ cli 15530 Σcsu 15734 Σ^csumge0 46283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-sumge0 46284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |