| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0isummpt2 | Structured version Visualization version GIF version | ||
| Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| sge0isummpt2.kph | ⊢ Ⅎ𝑘𝜑 |
| sge0isummpt2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) |
| sge0isummpt2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sge0isummpt2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| sge0isummpt2.b | ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) |
| Ref | Expression |
|---|---|
| sge0isummpt2 | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0isummpt2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | sge0isummpt2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 4 | sge0isummpt2.kph | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 6 | 4, 5 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 7 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
| 8 | 7 | nfcsb1 3869 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
| 9 | 8 | nfel1 2912 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞) |
| 10 | 6, 9 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
| 11 | eleq1w 2816 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 12 | 11 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 13 | csbeq1a 3860 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 14 | 13 | eleq1d 2818 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ (0[,)+∞) ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞))) |
| 15 | 12, 14 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)))) |
| 16 | sge0isummpt2.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) | |
| 17 | 10, 15, 16 | chvarfv 2245 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) |
| 18 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑖𝐴 | |
| 19 | nfcsb1v 3870 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐴 | |
| 20 | csbeq1a 3860 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑘⦌𝐴) | |
| 21 | 18, 19, 20 | cbvmpt 5197 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) |
| 22 | 21 | eqcomi 2742 | . . . . 5 ⊢ (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
| 23 | 7, 8, 13, 22 | fvmptf 6958 | . . . 4 ⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ (0[,)+∞)) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 24 | 3, 17, 23 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 25 | rge0ssre 13360 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 26 | ax-resscn 11072 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 27 | 25, 26 | sstri 3940 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 28 | 27, 17 | sselid 3928 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
| 29 | sge0isummpt2.b | . . . 4 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) | |
| 30 | 21 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) |
| 31 | 30 | seqeq3d 13920 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) = seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴))) |
| 32 | 31 | breq1d 5105 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵 ↔ seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵)) |
| 33 | 29, 32 | mpbid 232 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑖 ∈ 𝑍 ↦ ⦋𝑖 / 𝑘⦌𝐴)) ⇝ 𝐵) |
| 34 | 1, 2, 24, 28, 33 | isumclim 15668 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 = 𝐵) |
| 35 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑗𝐴 | |
| 36 | 13, 35, 8 | cbvsum 15606 | . . 3 ⊢ Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴 |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = Σ𝑗 ∈ 𝑍 ⦋𝑗 / 𝑘⦌𝐴) |
| 38 | 4, 16, 2, 1, 29 | sge0isummpt 46555 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) |
| 39 | 34, 37, 38 | 3eqtr4rd 2779 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ⦋csb 3846 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 0cc0 11015 + caddc 11018 +∞cpnf 11152 ℤcz 12477 ℤ≥cuz 12740 [,)cico 13251 seqcseq 13912 ⇝ cli 15395 Σcsu 15597 Σ^csumge0 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-sumge0 46488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |