Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0isummpt2 Structured version   Visualization version   GIF version

Theorem sge0isummpt2 46557
Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0isummpt2.kph 𝑘𝜑
sge0isummpt2.a ((𝜑𝑘𝑍) → 𝐴 ∈ (0[,)+∞))
sge0isummpt2.m (𝜑𝑀 ∈ ℤ)
sge0isummpt2.z 𝑍 = (ℤ𝑀)
sge0isummpt2.b (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝐵)
Assertion
Ref Expression
sge0isummpt2 (𝜑 → (Σ^‘(𝑘𝑍𝐴)) = Σ𝑘𝑍 𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑀(𝑘)

Proof of Theorem sge0isummpt2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0isummpt2.z . . 3 𝑍 = (ℤ𝑀)
2 sge0isummpt2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 simpr 484 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
4 sge0isummpt2.kph . . . . . . 7 𝑘𝜑
5 nfv 1915 . . . . . . 7 𝑘 𝑗𝑍
64, 5nfan 1900 . . . . . 6 𝑘(𝜑𝑗𝑍)
7 nfcv 2895 . . . . . . . 8 𝑘𝑗
87nfcsb1 3869 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
98nfel1 2912 . . . . . 6 𝑘𝑗 / 𝑘𝐴 ∈ (0[,)+∞)
106, 9nfim 1897 . . . . 5 𝑘((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ (0[,)+∞))
11 eleq1w 2816 . . . . . . 7 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1211anbi2d 630 . . . . . 6 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
13 csbeq1a 3860 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2818 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐴 ∈ (0[,)+∞)))
1512, 14imbi12d 344 . . . . 5 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐴 ∈ (0[,)+∞)) ↔ ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ (0[,)+∞))))
16 sge0isummpt2.a . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ (0[,)+∞))
1710, 15, 16chvarfv 2245 . . . 4 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ (0[,)+∞))
18 nfcv 2895 . . . . . . 7 𝑖𝐴
19 nfcsb1v 3870 . . . . . . 7 𝑘𝑖 / 𝑘𝐴
20 csbeq1a 3860 . . . . . . 7 (𝑘 = 𝑖𝐴 = 𝑖 / 𝑘𝐴)
2118, 19, 20cbvmpt 5197 . . . . . 6 (𝑘𝑍𝐴) = (𝑖𝑍𝑖 / 𝑘𝐴)
2221eqcomi 2742 . . . . 5 (𝑖𝑍𝑖 / 𝑘𝐴) = (𝑘𝑍𝐴)
237, 8, 13, 22fvmptf 6958 . . . 4 ((𝑗𝑍𝑗 / 𝑘𝐴 ∈ (0[,)+∞)) → ((𝑖𝑍𝑖 / 𝑘𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
243, 17, 23syl2anc 584 . . 3 ((𝜑𝑗𝑍) → ((𝑖𝑍𝑖 / 𝑘𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
25 rge0ssre 13360 . . . . 5 (0[,)+∞) ⊆ ℝ
26 ax-resscn 11072 . . . . 5 ℝ ⊆ ℂ
2725, 26sstri 3940 . . . 4 (0[,)+∞) ⊆ ℂ
2827, 17sselid 3928 . . 3 ((𝜑𝑗𝑍) → 𝑗 / 𝑘𝐴 ∈ ℂ)
29 sge0isummpt2.b . . . 4 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝐵)
3021a1i 11 . . . . . 6 (𝜑 → (𝑘𝑍𝐴) = (𝑖𝑍𝑖 / 𝑘𝐴))
3130seqeq3d 13920 . . . . 5 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) = seq𝑀( + , (𝑖𝑍𝑖 / 𝑘𝐴)))
3231breq1d 5105 . . . 4 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝐵 ↔ seq𝑀( + , (𝑖𝑍𝑖 / 𝑘𝐴)) ⇝ 𝐵))
3329, 32mpbid 232 . . 3 (𝜑 → seq𝑀( + , (𝑖𝑍𝑖 / 𝑘𝐴)) ⇝ 𝐵)
341, 2, 24, 28, 33isumclim 15668 . 2 (𝜑 → Σ𝑗𝑍 𝑗 / 𝑘𝐴 = 𝐵)
35 nfcv 2895 . . . 4 𝑗𝐴
3613, 35, 8cbvsum 15606 . . 3 Σ𝑘𝑍 𝐴 = Σ𝑗𝑍 𝑗 / 𝑘𝐴
3736a1i 11 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = Σ𝑗𝑍 𝑗 / 𝑘𝐴)
384, 16, 2, 1, 29sge0isummpt 46555 . 2 (𝜑 → (Σ^‘(𝑘𝑍𝐴)) = 𝐵)
3934, 37, 383eqtr4rd 2779 1 (𝜑 → (Σ^‘(𝑘𝑍𝐴)) = Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  csb 3846   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015   + caddc 11018  +∞cpnf 11152  cz 12477  cuz 12740  [,)cico 13251  seqcseq 13912  cli 15395  Σcsu 15597  Σ^csumge0 46487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400  df-sum 15598  df-sumge0 46488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator