Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjfi Structured version   Visualization version   GIF version

Theorem iundisjfi 32778
Description: Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 25476. (Contributed by Thierry Arnoux, 15-Feb-2017.)
Hypotheses
Ref Expression
iundisj3.0 𝑛𝐵
iundisj3.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjfi 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4027 . . . . . . 7 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (1..^𝑁)
2 fzossnn 13611 . . . . . . . . . 10 (1..^𝑁) ⊆ ℕ
3 nnuz 12775 . . . . . . . . . 10 ℕ = (ℤ‘1)
42, 3sseqtri 3978 . . . . . . . . 9 (1..^𝑁) ⊆ (ℤ‘1)
51, 4sstri 3939 . . . . . . . 8 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1)
6 rabn0 4336 . . . . . . . . 9 ({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
76biimpri 228 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅)
8 infssuzcl 12830 . . . . . . . 8 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
95, 7, 8sylancr 587 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
101, 9sselid 3927 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁))
11 nfrab1 3415 . . . . . . . . . . 11 𝑛{𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}
12 nfcv 2894 . . . . . . . . . . 11 𝑛
13 nfcv 2894 . . . . . . . . . . 11 𝑛 <
1411, 12, 13nfinf 9367 . . . . . . . . . 10 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )
15 nfcv 2894 . . . . . . . . . 10 𝑛(1..^𝑁)
1614nfcsb1 3868 . . . . . . . . . . 11 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1716nfcri 2886 . . . . . . . . . 10 𝑛 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
18 csbeq1a 3859 . . . . . . . . . . 11 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1918eleq2d 2817 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2014, 15, 17, 19elrabf 3639 . . . . . . . . 9 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
219, 20sylib 218 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2221simprd 495 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
231, 2sstri 3939 . . . . . . . . . . 11 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℕ
24 nnssre 12129 . . . . . . . . . . 11 ℕ ⊆ ℝ
2523, 24sstri 3939 . . . . . . . . . 10 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℝ
2625, 9sselid 3927 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2726ltnrd 11247 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
28 eliun 4943 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2926ad2antrr 726 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
30 elfzouz2 13574 . . . . . . . . . . . . . . . 16 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
31 fzoss2 13587 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3210, 30, 313syl 18 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3332sselda 3929 . . . . . . . . . . . . . 14 ((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) → 𝑘 ∈ (1..^𝑁))
3433adantr 480 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ (1..^𝑁))
352, 34sselid 3927 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3635nnred 12140 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
37 simpr 484 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
38 nfcv 2894 . . . . . . . . . . . . . 14 𝑛𝑘
39 iundisj3.0 . . . . . . . . . . . . . . 15 𝑛𝐵
4039nfcri 2886 . . . . . . . . . . . . . 14 𝑛 𝑥𝐵
41 iundisj3.1 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝐴 = 𝐵)
4241eleq2d 2817 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4338, 15, 40, 42elrabf 3639 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (𝑘 ∈ (1..^𝑁) ∧ 𝑥𝐵))
4434, 37, 43sylanbrc 583 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
45 infssuzle 12829 . . . . . . . . . . . 12 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
465, 44, 45sylancr 587 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
47 elfzolt2 13568 . . . . . . . . . . . 12 (𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4847ad2antlr 727 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4929, 36, 29, 46, 48lelttrd 11271 . . . . . . . . . 10 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
5049rexlimdva2 3135 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5128, 50biimtrid 242 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5227, 51mtod 198 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5322, 52eldifd 3908 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
54 csbeq1 3848 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
55 oveq2 7354 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5655iuneq1d 4967 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5754, 56difeq12d 4074 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
5857eleq2d 2817 . . . . . . 7 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
5958rspcev 3572 . . . . . 6 ((inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6010, 53, 59syl2anc 584 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
61 nfv 1915 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
62 nfcsb1v 3869 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
63 nfcv 2894 . . . . . . . . 9 𝑛(1..^𝑚)
6463, 39nfiun 4971 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
6562, 64nfdif 4076 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
6665nfcri 2886 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
67 csbeq1a 3859 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
68 oveq2 7354 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
6968iuneq1d 4967 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7067, 69difeq12d 4074 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7170eleq2d 2817 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
7261, 66, 71cbvrexw 3275 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7360, 72sylibr 234 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
74 eldifi 4078 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
7574reximi 3070 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
7673, 75impbii 209 . . 3 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
77 eliun 4943 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
78 eliun 4943 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
7976, 77, 783bitr4i 303 . 2 (𝑥 𝑛 ∈ (1..^𝑁)𝐴𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8079eqriv 2728 1 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wne 2928  wrex 3056  {crab 3395  csb 3845  cdif 3894  wss 3897  c0 4280   ciun 4939   class class class wbr 5089  cfv 6481  (class class class)co 7346  infcinf 9325  cr 11005  1c1 11007   < clt 11146  cle 11147  cn 12125  cuz 12732  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  iundisjcnt  32780
  Copyright terms: Public domain W3C validator