Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjfi Structured version   Visualization version   GIF version

Theorem iundisjfi 32801
Description: Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 25602. (Contributed by Thierry Arnoux, 15-Feb-2017.)
Hypotheses
Ref Expression
iundisj3.0 𝑛𝐵
iundisj3.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjfi 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . . . . . 7 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (1..^𝑁)
2 fzossnn 13765 . . . . . . . . . 10 (1..^𝑁) ⊆ ℕ
3 nnuz 12946 . . . . . . . . . 10 ℕ = (ℤ‘1)
42, 3sseqtri 4045 . . . . . . . . 9 (1..^𝑁) ⊆ (ℤ‘1)
51, 4sstri 4018 . . . . . . . 8 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1)
6 rabn0 4412 . . . . . . . . 9 ({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
76biimpri 228 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅)
8 infssuzcl 12997 . . . . . . . 8 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
95, 7, 8sylancr 586 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
101, 9sselid 4006 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁))
11 nfrab1 3464 . . . . . . . . . . 11 𝑛{𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}
12 nfcv 2908 . . . . . . . . . . 11 𝑛
13 nfcv 2908 . . . . . . . . . . 11 𝑛 <
1411, 12, 13nfinf 9551 . . . . . . . . . 10 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )
15 nfcv 2908 . . . . . . . . . 10 𝑛(1..^𝑁)
1614nfcsb1 3945 . . . . . . . . . . 11 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1716nfcri 2900 . . . . . . . . . 10 𝑛 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
18 csbeq1a 3935 . . . . . . . . . . 11 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1918eleq2d 2830 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2014, 15, 17, 19elrabf 3704 . . . . . . . . 9 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
219, 20sylib 218 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2221simprd 495 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
231, 2sstri 4018 . . . . . . . . . . 11 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℕ
24 nnssre 12297 . . . . . . . . . . 11 ℕ ⊆ ℝ
2523, 24sstri 4018 . . . . . . . . . 10 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℝ
2625, 9sselid 4006 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2726ltnrd 11424 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
28 eliun 5019 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2926ad2antrr 725 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
30 elfzouz2 13731 . . . . . . . . . . . . . . . 16 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
31 fzoss2 13744 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3210, 30, 313syl 18 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3332sselda 4008 . . . . . . . . . . . . . 14 ((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) → 𝑘 ∈ (1..^𝑁))
3433adantr 480 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ (1..^𝑁))
352, 34sselid 4006 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3635nnred 12308 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
37 simpr 484 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
38 nfcv 2908 . . . . . . . . . . . . . 14 𝑛𝑘
39 iundisj3.0 . . . . . . . . . . . . . . 15 𝑛𝐵
4039nfcri 2900 . . . . . . . . . . . . . 14 𝑛 𝑥𝐵
41 iundisj3.1 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝐴 = 𝐵)
4241eleq2d 2830 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4338, 15, 40, 42elrabf 3704 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (𝑘 ∈ (1..^𝑁) ∧ 𝑥𝐵))
4434, 37, 43sylanbrc 582 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
45 infssuzle 12996 . . . . . . . . . . . 12 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
465, 44, 45sylancr 586 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
47 elfzolt2 13725 . . . . . . . . . . . 12 (𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4847ad2antlr 726 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4929, 36, 29, 46, 48lelttrd 11448 . . . . . . . . . 10 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
5049rexlimdva2 3163 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5128, 50biimtrid 242 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5227, 51mtod 198 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5322, 52eldifd 3987 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
54 csbeq1 3924 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
55 oveq2 7456 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5655iuneq1d 5042 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5754, 56difeq12d 4150 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
5857eleq2d 2830 . . . . . . 7 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
5958rspcev 3635 . . . . . 6 ((inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6010, 53, 59syl2anc 583 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
61 nfv 1913 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
62 nfcsb1v 3946 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
63 nfcv 2908 . . . . . . . . 9 𝑛(1..^𝑚)
6463, 39nfiun 5046 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
6562, 64nfdif 4152 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
6665nfcri 2900 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
67 csbeq1a 3935 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
68 oveq2 7456 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
6968iuneq1d 5042 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7067, 69difeq12d 4150 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7170eleq2d 2830 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
7261, 66, 71cbvrexw 3313 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7360, 72sylibr 234 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
74 eldifi 4154 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
7574reximi 3090 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
7673, 75impbii 209 . . 3 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
77 eliun 5019 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
78 eliun 5019 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
7976, 77, 783bitr4i 303 . 2 (𝑥 𝑛 ∈ (1..^𝑁)𝐴𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8079eqriv 2737 1 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wne 2946  wrex 3076  {crab 3443  csb 3921  cdif 3973  wss 3976  c0 4352   ciun 5015   class class class wbr 5166  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  1c1 11185   < clt 11324  cle 11325  cn 12293  cuz 12903  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  iundisjcnt  32803
  Copyright terms: Public domain W3C validator