Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisjfi Structured version   Visualization version   GIF version

Theorem iundisjfi 31019
Description: Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 24617. (Contributed by Thierry Arnoux, 15-Feb-2017.)
Hypotheses
Ref Expression
iundisj3.0 𝑛𝐵
iundisj3.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisjfi 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisjfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4009 . . . . . . 7 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (1..^𝑁)
2 fzossnn 13364 . . . . . . . . . 10 (1..^𝑁) ⊆ ℕ
3 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
42, 3sseqtri 3953 . . . . . . . . 9 (1..^𝑁) ⊆ (ℤ‘1)
51, 4sstri 3926 . . . . . . . 8 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1)
6 rabn0 4316 . . . . . . . . 9 ({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
76biimpri 227 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅)
8 infssuzcl 12601 . . . . . . . 8 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ≠ ∅) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
95, 7, 8sylancr 586 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
101, 9sselid 3915 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁))
11 nfrab1 3310 . . . . . . . . . . 11 𝑛{𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}
12 nfcv 2906 . . . . . . . . . . 11 𝑛
13 nfcv 2906 . . . . . . . . . . 11 𝑛 <
1411, 12, 13nfinf 9171 . . . . . . . . . 10 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )
15 nfcv 2906 . . . . . . . . . 10 𝑛(1..^𝑁)
1614nfcsb1 3852 . . . . . . . . . . 11 𝑛inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
1716nfcri 2893 . . . . . . . . . 10 𝑛 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴
18 csbeq1a 3842 . . . . . . . . . . 11 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
1918eleq2d 2824 . . . . . . . . . 10 (𝑛 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2014, 15, 17, 19elrabf 3613 . . . . . . . . 9 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
219, 20sylib 217 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴))
2221simprd 495 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
231, 2sstri 3926 . . . . . . . . . . 11 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℕ
24 nnssre 11907 . . . . . . . . . . 11 ℕ ⊆ ℝ
2523, 24sstri 3926 . . . . . . . . . 10 {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ ℝ
2625, 9sselid 3915 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2726ltnrd 11039 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
28 eliun 4925 . . . . . . . . 9 (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 ↔ ∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵)
2926ad2antrr 722 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
30 elfzouz2 13330 . . . . . . . . . . . . . . . 16 (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
31 fzoss2 13343 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3210, 30, 313syl 18 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) ⊆ (1..^𝑁))
3332sselda 3917 . . . . . . . . . . . . . 14 ((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) → 𝑘 ∈ (1..^𝑁))
3433adantr 480 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ (1..^𝑁))
352, 34sselid 3915 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℕ)
3635nnred 11918 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
37 simpr 484 . . . . . . . . . . . . 13 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑥𝐵)
38 nfcv 2906 . . . . . . . . . . . . . 14 𝑛𝑘
39 iundisj3.0 . . . . . . . . . . . . . . 15 𝑛𝐵
4039nfcri 2893 . . . . . . . . . . . . . 14 𝑛 𝑥𝐵
41 iundisj3.1 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘𝐴 = 𝐵)
4241eleq2d 2824 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑥𝐴𝑥𝐵))
4338, 15, 40, 42elrabf 3613 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ↔ (𝑘 ∈ (1..^𝑁) ∧ 𝑥𝐵))
4434, 37, 43sylanbrc 582 . . . . . . . . . . . 12 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴})
45 infssuzle 12600 . . . . . . . . . . . 12 (({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
465, 44, 45sylancr 586 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ≤ 𝑘)
47 elfzolt2 13325 . . . . . . . . . . . 12 (𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4847ad2antlr 723 . . . . . . . . . . 11 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → 𝑘 < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
4929, 36, 29, 46, 48lelttrd 11063 . . . . . . . . . 10 (((∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))) ∧ 𝑥𝐵) → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))
5049rexlimdva2 3215 . . . . . . . . 9 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (∃𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝑥𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5128, 50syl5bi 241 . . . . . . . 8 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → (𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵 → inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) < inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5227, 51mtod 197 . . . . . . 7 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ¬ 𝑥 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5322, 52eldifd 3894 . . . . . 6 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
54 csbeq1 3831 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑚 / 𝑛𝐴 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴)
55 oveq2 7263 . . . . . . . . . 10 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (1..^𝑚) = (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < )))
5655iuneq1d 4948 . . . . . . . . 9 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → 𝑘 ∈ (1..^𝑚)𝐵 = 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)
5754, 56difeq12d 4054 . . . . . . . 8 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) = (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵))
5857eleq2d 2824 . . . . . . 7 (𝑚 = inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) → (𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵) ↔ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)))
5958rspcev 3552 . . . . . 6 ((inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) ∈ (1..^𝑁) ∧ 𝑥 ∈ (inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ) / 𝑛𝐴 𝑘 ∈ (1..^inf({𝑛 ∈ (1..^𝑁) ∣ 𝑥𝐴}, ℝ, < ))𝐵)) → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
6010, 53, 59syl2anc 583 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
61 nfv 1918 . . . . . 6 𝑚 𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
62 nfcsb1v 3853 . . . . . . . 8 𝑛𝑚 / 𝑛𝐴
63 nfcv 2906 . . . . . . . . 9 𝑛(1..^𝑚)
6463, 39nfiun 4951 . . . . . . . 8 𝑛 𝑘 ∈ (1..^𝑚)𝐵
6562, 64nfdif 4056 . . . . . . 7 𝑛(𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
6665nfcri 2893 . . . . . 6 𝑛 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)
67 csbeq1a 3842 . . . . . . . 8 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
68 oveq2 7263 . . . . . . . . 9 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
6968iuneq1d 4948 . . . . . . . 8 (𝑛 = 𝑚 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑚)𝐵)
7067, 69difeq12d 4054 . . . . . . 7 (𝑛 = 𝑚 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7170eleq2d 2824 . . . . . 6 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ 𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵)))
7261, 66, 71cbvrexw 3364 . . . . 5 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑚 ∈ (1..^𝑁)𝑥 ∈ (𝑚 / 𝑛𝐴 𝑘 ∈ (1..^𝑚)𝐵))
7360, 72sylibr 233 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 → ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
74 eldifi 4057 . . . . 5 (𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → 𝑥𝐴)
7574reximi 3174 . . . 4 (∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) → ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
7673, 75impbii 208 . . 3 (∃𝑛 ∈ (1..^𝑁)𝑥𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
77 eliun 4925 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)𝐴 ↔ ∃𝑛 ∈ (1..^𝑁)𝑥𝐴)
78 eliun 4925 . . 3 (𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∃𝑛 ∈ (1..^𝑁)𝑥 ∈ (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
7976, 77, 783bitr4i 302 . 2 (𝑥 𝑛 ∈ (1..^𝑁)𝐴𝑥 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
8079eqriv 2735 1 𝑛 ∈ (1..^𝑁)𝐴 = 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886  wne 2942  wrex 3064  {crab 3067  csb 3828  cdif 3880  wss 3883  c0 4253   ciun 4921   class class class wbr 5070  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  1c1 10803   < clt 10940  cle 10941  cn 11903  cuz 12511  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  iundisjcnt  31021
  Copyright terms: Public domain W3C validator