| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl2 | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| hoimbl2.k | ⊢ Ⅎ𝑘𝜑 |
| hoimbl2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbl2.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbl2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| hoimbl2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| hoimbl2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 2 | hoimbl2.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1914 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 4 | 2, 3 | nfan 1899 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
| 5 | nfcsb1v 3889 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 6 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑘ℝ | |
| 7 | 5, 6 | nfel 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
| 8 | 4, 7 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 9 | eleq1w 2812 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 10 | 9 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
| 11 | csbeq1a 3879 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 12 | 11 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
| 13 | 10, 12 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
| 14 | hoimbl2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 15 | 8, 13, 14 | chvarfv 2241 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 16 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
| 17 | 16 | nfcsb1 3888 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 16, 17, 11, 18 | fvmptf 6992 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 1, 15, 19 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 21 | 16 | nfcsb1 3888 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
| 22 | 21, 6 | nfel 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 23 | 4, 22 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 24 | csbeq1a 3879 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 26 | 10, 25 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 27 | hoimbl2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2241 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 29 | eqid 2730 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 16, 21, 24, 29 | fvmptf 6992 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 31 | 1, 28, 30 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 32 | 20, 31 | oveq12d 7408 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 33 | 32 | ixpeq2dva 8888 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 34 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑗(𝐴[,)𝐵) | |
| 35 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑘[,) | |
| 36 | 5, 35, 21 | nfov 7420 | . . . . . 6 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
| 37 | 11, 24 | oveq12d 7408 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴[,)𝐵) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 38 | 34, 36, 37 | cbvixp 8890 | . . . . 5 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
| 39 | 38 | eqcomi 2739 | . . . 4 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
| 40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) |
| 41 | 33, 40 | eqtr2d 2766 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
| 42 | hoimbl2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 43 | hoimbl2.s | . . 3 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 44 | 2, 14, 18 | fmptdf 7092 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 45 | 2, 27, 29 | fmptdf 7092 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 46 | 42, 43, 44, 45 | hoimbl 46636 | . 2 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) ∈ 𝑆) |
| 47 | 41, 46 | eqeltrd 2829 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ⦋csb 3865 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Xcixp 8873 Fincfn 8921 ℝcr 11074 [,)cico 13315 volncvoln 46543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-prod 15877 df-rest 17392 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-ovol 25372 df-vol 25373 df-salg 46314 df-sumge0 46368 df-mea 46455 df-ome 46495 df-caragen 46497 df-ovoln 46542 df-voln 46544 |
| This theorem is referenced by: vonhoire 46677 |
| Copyright terms: Public domain | W3C validator |