Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl2 Structured version   Visualization version   GIF version

Theorem hoimbl2 43304
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
hoimbl2.k 𝑘𝜑
hoimbl2.x (𝜑𝑋 ∈ Fin)
hoimbl2.s 𝑆 = dom (voln‘𝑋)
hoimbl2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoimbl2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoimbl2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑆(𝑘)

Proof of Theorem hoimbl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗𝑋)
2 hoimbl2.k . . . . . . . . 9 𝑘𝜑
3 nfv 1915 . . . . . . . . 9 𝑘 𝑗𝑋
42, 3nfan 1900 . . . . . . . 8 𝑘(𝜑𝑗𝑋)
5 nfcsb1v 3852 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴
6 nfcv 2955 . . . . . . . . 9 𝑘
75, 6nfel 2969 . . . . . . . 8 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
84, 7nfim 1897 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
9 eleq1w 2872 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
109anbi2d 631 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
11 csbeq1a 3842 . . . . . . . . 9 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1211eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1310, 12imbi12d 348 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
14 hoimbl2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
158, 13, 14chvarfv 2240 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
16 nfcv 2955 . . . . . . 7 𝑘𝑗
1716nfcsb1 3851 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
18 eqid 2798 . . . . . . 7 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1916, 17, 11, 18fvmptf 6766 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
201, 15, 19syl2anc 587 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2116nfcsb1 3851 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐵
2221, 6nfel 2969 . . . . . . . 8 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
234, 22nfim 1897 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3842 . . . . . . . . 9 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2610, 25imbi12d 348 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 hoimbl2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2240 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2798 . . . . . . 7 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3016, 21, 24, 29fvmptf 6766 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
311, 28, 30syl2anc 587 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7153 . . . 4 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8459 . . 3 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
34 nfcv 2955 . . . . . 6 𝑗(𝐴[,)𝐵)
35 nfcv 2955 . . . . . . 7 𝑘[,)
365, 35, 21nfov 7165 . . . . . 6 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3711, 24oveq12d 7153 . . . . . 6 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3834, 36, 37cbvixp 8461 . . . . 5 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3938eqcomi 2807 . . . 4 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
4039a1i 11 . . 3 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
4133, 40eqtr2d 2834 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
42 hoimbl2.x . . 3 (𝜑𝑋 ∈ Fin)
43 hoimbl2.s . . 3 𝑆 = dom (voln‘𝑋)
442, 14, 18fmptdf 6858 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
452, 27, 29fmptdf 6858 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
4642, 43, 44, 45hoimbl 43270 . 2 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) ∈ 𝑆)
4741, 46eqeltrd 2890 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  csb 3828  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  Xcixp 8444  Fincfn 8492  cr 10525  [,)cico 12728  volncvoln 43177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-salg 42951  df-sumge0 43002  df-mea 43089  df-ome 43129  df-caragen 43131  df-ovoln 43176  df-voln 43178
This theorem is referenced by:  vonhoire  43311
  Copyright terms: Public domain W3C validator