Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl2 Structured version   Visualization version   GIF version

Theorem hoimbl2 46663
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
hoimbl2.k 𝑘𝜑
hoimbl2.x (𝜑𝑋 ∈ Fin)
hoimbl2.s 𝑆 = dom (voln‘𝑋)
hoimbl2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoimbl2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoimbl2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑆(𝑘)

Proof of Theorem hoimbl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗𝑋)
2 hoimbl2.k . . . . . . . . 9 𝑘𝜑
3 nfv 1914 . . . . . . . . 9 𝑘 𝑗𝑋
42, 3nfan 1899 . . . . . . . 8 𝑘(𝜑𝑗𝑋)
5 nfcsb1v 3886 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴
6 nfcv 2891 . . . . . . . . 9 𝑘
75, 6nfel 2906 . . . . . . . 8 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
84, 7nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
9 eleq1w 2811 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
109anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
11 csbeq1a 3876 . . . . . . . . 9 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1211eleq1d 2813 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1310, 12imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
14 hoimbl2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
158, 13, 14chvarfv 2241 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
16 nfcv 2891 . . . . . . 7 𝑘𝑗
1716nfcsb1 3885 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
18 eqid 2729 . . . . . . 7 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1916, 17, 11, 18fvmptf 6989 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
201, 15, 19syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2116nfcsb1 3885 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐵
2221, 6nfel 2906 . . . . . . . 8 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
234, 22nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3876 . . . . . . . . 9 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2813 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2610, 25imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 hoimbl2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2241 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2729 . . . . . . 7 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3016, 21, 24, 29fvmptf 6989 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
311, 28, 30syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7405 . . . 4 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8885 . . 3 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
34 nfcv 2891 . . . . . 6 𝑗(𝐴[,)𝐵)
35 nfcv 2891 . . . . . . 7 𝑘[,)
365, 35, 21nfov 7417 . . . . . 6 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3711, 24oveq12d 7405 . . . . . 6 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3834, 36, 37cbvixp 8887 . . . . 5 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3938eqcomi 2738 . . . 4 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
4039a1i 11 . . 3 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
4133, 40eqtr2d 2765 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
42 hoimbl2.x . . 3 (𝜑𝑋 ∈ Fin)
43 hoimbl2.s . . 3 𝑆 = dom (voln‘𝑋)
442, 14, 18fmptdf 7089 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
452, 27, 29fmptdf 7089 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
4642, 43, 44, 45hoimbl 46629 . 2 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) ∈ 𝑆)
4741, 46eqeltrd 2828 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  csb 3862  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  Xcixp 8870  Fincfn 8918  cr 11067  [,)cico 13308  volncvoln 46536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-salg 46307  df-sumge0 46361  df-mea 46448  df-ome 46488  df-caragen 46490  df-ovoln 46535  df-voln 46537
This theorem is referenced by:  vonhoire  46670
  Copyright terms: Public domain W3C validator