Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl2 | Structured version Visualization version GIF version |
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
hoimbl2.k | ⊢ Ⅎ𝑘𝜑 |
hoimbl2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoimbl2.s | ⊢ 𝑆 = dom (voln‘𝑋) |
hoimbl2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
hoimbl2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
hoimbl2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
2 | hoimbl2.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1916 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
4 | 2, 3 | nfan 1901 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
5 | nfcsb1v 3866 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
6 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑘ℝ | |
7 | 5, 6 | nfel 2918 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
8 | 4, 7 | nfim 1898 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
9 | eleq1w 2819 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
10 | 9 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
11 | csbeq1a 3855 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
12 | 11 | eleq1d 2821 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
13 | 10, 12 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
14 | hoimbl2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
15 | 8, 13, 14 | chvarfv 2232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
16 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
17 | 16 | nfcsb1 3865 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
18 | eqid 2736 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
19 | 16, 17, 11, 18 | fvmptf 6935 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
20 | 1, 15, 19 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
21 | 16 | nfcsb1 3865 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
22 | 21, 6 | nfel 2918 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
23 | 4, 22 | nfim 1898 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
24 | csbeq1a 3855 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
25 | 24 | eleq1d 2821 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
26 | 10, 25 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
27 | hoimbl2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
28 | 23, 26, 27 | chvarfv 2232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
29 | eqid 2736 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
30 | 16, 21, 24, 29 | fvmptf 6935 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
31 | 1, 28, 30 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
32 | 20, 31 | oveq12d 7334 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
33 | 32 | ixpeq2dva 8749 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
34 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑗(𝐴[,)𝐵) | |
35 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑘[,) | |
36 | 5, 35, 21 | nfov 7346 | . . . . . 6 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
37 | 11, 24 | oveq12d 7334 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴[,)𝐵) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
38 | 34, 36, 37 | cbvixp 8751 | . . . . 5 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
39 | 38 | eqcomi 2745 | . . . 4 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) |
41 | 33, 40 | eqtr2d 2777 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
42 | hoimbl2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
43 | hoimbl2.s | . . 3 ⊢ 𝑆 = dom (voln‘𝑋) | |
44 | 2, 14, 18 | fmptdf 7030 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
45 | 2, 27, 29 | fmptdf 7030 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
46 | 42, 43, 44, 45 | hoimbl 44425 | . 2 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) ∈ 𝑆) |
47 | 41, 46 | eqeltrd 2837 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ⦋csb 3841 ↦ cmpt 5169 dom cdm 5607 ‘cfv 6465 (class class class)co 7316 Xcixp 8734 Fincfn 8782 ℝcr 10949 [,)cico 13160 volncvoln 44332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cc 10270 ax-ac2 10298 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 ax-addf 11029 ax-mulf 11030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-disj 5052 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-tpos 8090 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-oadd 8349 df-omul 8350 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fi 9246 df-sup 9277 df-inf 9278 df-oi 9345 df-dju 9736 df-card 9774 df-acn 9777 df-ac 9951 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-q 12768 df-rp 12810 df-xneg 12927 df-xadd 12928 df-xmul 12929 df-ioo 13162 df-ico 13164 df-icc 13165 df-fz 13319 df-fzo 13462 df-fl 13591 df-seq 13801 df-exp 13862 df-hash 14124 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-clim 15273 df-rlim 15274 df-sum 15474 df-prod 15692 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-starv 17051 df-tset 17055 df-ple 17056 df-ds 17058 df-unif 17059 df-rest 17207 df-0g 17226 df-topgen 17228 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-minusg 18654 df-subg 18825 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-ring 19857 df-cring 19858 df-oppr 19934 df-dvdsr 19955 df-unit 19956 df-invr 19986 df-dvr 19997 df-drng 20069 df-psmet 20669 df-xmet 20670 df-met 20671 df-bl 20672 df-mopn 20673 df-cnfld 20678 df-top 22123 df-topon 22140 df-bases 22176 df-cmp 22618 df-ovol 24708 df-vol 24709 df-salg 44105 df-sumge0 44157 df-mea 44244 df-ome 44284 df-caragen 44286 df-ovoln 44331 df-voln 44333 |
This theorem is referenced by: vonhoire 44466 |
Copyright terms: Public domain | W3C validator |