| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoimbl2 | Structured version Visualization version GIF version | ||
| Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| hoimbl2.k | ⊢ Ⅎ𝑘𝜑 |
| hoimbl2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| hoimbl2.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| hoimbl2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| hoimbl2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| hoimbl2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 2 | hoimbl2.k | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1913 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 4 | 2, 3 | nfan 1898 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
| 5 | nfcsb1v 3896 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 6 | nfcv 2897 | . . . . . . . . 9 ⊢ Ⅎ𝑘ℝ | |
| 7 | 5, 6 | nfel 2912 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
| 8 | 4, 7 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 9 | eleq1w 2816 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 10 | 9 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
| 11 | csbeq1a 3886 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 12 | 11 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
| 13 | 10, 12 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
| 14 | hoimbl2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 15 | 8, 13, 14 | chvarfv 2239 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 16 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑘𝑗 | |
| 17 | 16 | nfcsb1 3895 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
| 18 | eqid 2734 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 16, 17, 11, 18 | fvmptf 7003 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 1, 15, 19 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 21 | 16 | nfcsb1 3895 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
| 22 | 21, 6 | nfel 2912 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 23 | 4, 22 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 24 | csbeq1a 3886 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 26 | 10, 25 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 27 | hoimbl2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2239 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 29 | eqid 2734 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 16, 21, 24, 29 | fvmptf 7003 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 31 | 1, 28, 30 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 32 | 20, 31 | oveq12d 7417 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 33 | 32 | ixpeq2dva 8920 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 34 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑗(𝐴[,)𝐵) | |
| 35 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑘[,) | |
| 36 | 5, 35, 21 | nfov 7429 | . . . . . 6 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
| 37 | 11, 24 | oveq12d 7417 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴[,)𝐵) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 38 | 34, 36, 37 | cbvixp 8922 | . . . . 5 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) |
| 39 | 38 | eqcomi 2743 | . . . 4 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵) |
| 40 | 39 | a1i 11 | . . 3 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,)𝐵)) |
| 41 | 33, 40 | eqtr2d 2770 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
| 42 | hoimbl2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 43 | hoimbl2.s | . . 3 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 44 | 2, 14, 18 | fmptdf 7103 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 45 | 2, 27, 29 | fmptdf 7103 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 46 | 42, 43, 44, 45 | hoimbl 46590 | . 2 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) ∈ 𝑆) |
| 47 | 41, 46 | eqeltrd 2833 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ⦋csb 3872 ↦ cmpt 5198 dom cdm 5651 ‘cfv 6527 (class class class)co 7399 Xcixp 8905 Fincfn 8953 ℝcr 11120 [,)cico 13355 volncvoln 46497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cc 10441 ax-ac2 10469 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-disj 5084 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-omul 8479 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-dju 9907 df-card 9945 df-acn 9948 df-ac 10122 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-z 12581 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-seq 14009 df-exp 14069 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-clim 15491 df-rlim 15492 df-sum 15690 df-prod 15907 df-rest 17421 df-topgen 17442 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-top 22817 df-topon 22834 df-bases 22869 df-cmp 23310 df-ovol 25402 df-vol 25403 df-salg 46268 df-sumge0 46322 df-mea 46409 df-ome 46449 df-caragen 46451 df-ovoln 46496 df-voln 46498 |
| This theorem is referenced by: vonhoire 46631 |
| Copyright terms: Public domain | W3C validator |