Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl2 Structured version   Visualization version   GIF version

Theorem hoimbl2 46694
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
hoimbl2.k 𝑘𝜑
hoimbl2.x (𝜑𝑋 ∈ Fin)
hoimbl2.s 𝑆 = dom (voln‘𝑋)
hoimbl2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoimbl2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoimbl2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑆(𝑘)

Proof of Theorem hoimbl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗𝑋)
2 hoimbl2.k . . . . . . . . 9 𝑘𝜑
3 nfv 1914 . . . . . . . . 9 𝑘 𝑗𝑋
42, 3nfan 1899 . . . . . . . 8 𝑘(𝜑𝑗𝑋)
5 nfcsb1v 3898 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴
6 nfcv 2898 . . . . . . . . 9 𝑘
75, 6nfel 2913 . . . . . . . 8 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
84, 7nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
9 eleq1w 2817 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
109anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
11 csbeq1a 3888 . . . . . . . . 9 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1211eleq1d 2819 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1310, 12imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
14 hoimbl2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
158, 13, 14chvarfv 2240 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
16 nfcv 2898 . . . . . . 7 𝑘𝑗
1716nfcsb1 3897 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
18 eqid 2735 . . . . . . 7 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1916, 17, 11, 18fvmptf 7007 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
201, 15, 19syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2116nfcsb1 3897 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐵
2221, 6nfel 2913 . . . . . . . 8 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
234, 22nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3888 . . . . . . . . 9 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2819 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2610, 25imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 hoimbl2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2240 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2735 . . . . . . 7 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3016, 21, 24, 29fvmptf 7007 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
311, 28, 30syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7423 . . . 4 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8926 . . 3 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
34 nfcv 2898 . . . . . 6 𝑗(𝐴[,)𝐵)
35 nfcv 2898 . . . . . . 7 𝑘[,)
365, 35, 21nfov 7435 . . . . . 6 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3711, 24oveq12d 7423 . . . . . 6 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3834, 36, 37cbvixp 8928 . . . . 5 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3938eqcomi 2744 . . . 4 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
4039a1i 11 . . 3 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
4133, 40eqtr2d 2771 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
42 hoimbl2.x . . 3 (𝜑𝑋 ∈ Fin)
43 hoimbl2.s . . 3 𝑆 = dom (voln‘𝑋)
442, 14, 18fmptdf 7107 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
452, 27, 29fmptdf 7107 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
4642, 43, 44, 45hoimbl 46660 . 2 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) ∈ 𝑆)
4741, 46eqeltrd 2834 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  csb 3874  cmpt 5201  dom cdm 5654  cfv 6531  (class class class)co 7405  Xcixp 8911  Fincfn 8959  cr 11128  [,)cico 13364  volncvoln 46567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418  df-salg 46338  df-sumge0 46392  df-mea 46479  df-ome 46519  df-caragen 46521  df-ovoln 46566  df-voln 46568
This theorem is referenced by:  vonhoire  46701
  Copyright terms: Public domain W3C validator