Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoimbl2 Structured version   Visualization version   GIF version

Theorem hoimbl2 46670
Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
hoimbl2.k 𝑘𝜑
hoimbl2.x (𝜑𝑋 ∈ Fin)
hoimbl2.s 𝑆 = dom (voln‘𝑋)
hoimbl2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoimbl2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
hoimbl2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑆(𝑘)

Proof of Theorem hoimbl2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗𝑋)
2 hoimbl2.k . . . . . . . . 9 𝑘𝜑
3 nfv 1914 . . . . . . . . 9 𝑘 𝑗𝑋
42, 3nfan 1899 . . . . . . . 8 𝑘(𝜑𝑗𝑋)
5 nfcsb1v 3889 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐴
6 nfcv 2892 . . . . . . . . 9 𝑘
75, 6nfel 2907 . . . . . . . 8 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
84, 7nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
9 eleq1w 2812 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
109anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
11 csbeq1a 3879 . . . . . . . . 9 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1211eleq1d 2814 . . . . . . . 8 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1310, 12imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
14 hoimbl2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
158, 13, 14chvarfv 2241 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
16 nfcv 2892 . . . . . . 7 𝑘𝑗
1716nfcsb1 3888 . . . . . . 7 𝑘𝑗 / 𝑘𝐴
18 eqid 2730 . . . . . . 7 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1916, 17, 11, 18fvmptf 6992 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
201, 15, 19syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
2116nfcsb1 3888 . . . . . . . . 9 𝑘𝑗 / 𝑘𝐵
2221, 6nfel 2907 . . . . . . . 8 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
234, 22nfim 1896 . . . . . . 7 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3879 . . . . . . . . 9 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2814 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2610, 25imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 hoimbl2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2241 . . . . . 6 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2730 . . . . . . 7 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3016, 21, 24, 29fvmptf 6992 . . . . . 6 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
311, 28, 30syl2anc 584 . . . . 5 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7408 . . . 4 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8888 . . 3 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
34 nfcv 2892 . . . . . 6 𝑗(𝐴[,)𝐵)
35 nfcv 2892 . . . . . . 7 𝑘[,)
365, 35, 21nfov 7420 . . . . . 6 𝑘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3711, 24oveq12d 7408 . . . . . 6 (𝑘 = 𝑗 → (𝐴[,)𝐵) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
3834, 36, 37cbvixp 8890 . . . . 5 X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)
3938eqcomi 2739 . . . 4 X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵)
4039a1i 11 . . 3 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,)𝐵))
4133, 40eqtr2d 2766 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)))
42 hoimbl2.x . . 3 (𝜑𝑋 ∈ Fin)
43 hoimbl2.s . . 3 𝑆 = dom (voln‘𝑋)
442, 14, 18fmptdf 7092 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
452, 27, 29fmptdf 7092 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
4642, 43, 44, 45hoimbl 46636 . 2 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) ∈ 𝑆)
4741, 46eqeltrd 2829 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  csb 3865  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  Xcixp 8873  Fincfn 8921  cr 11074  [,)cico 13315  volncvoln 46543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-salg 46314  df-sumge0 46368  df-mea 46455  df-ome 46495  df-caragen 46497  df-ovoln 46542  df-voln 46544
This theorem is referenced by:  vonhoire  46677
  Copyright terms: Public domain W3C validator