Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimcnv Structured version   Visualization version   GIF version

Theorem fnlimcnv 45672
Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimcnv.1 𝑥𝐹
fnlimcnv.2 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimcnv.3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimcnv.4 (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimcnv (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Distinct variable groups:   𝑚,𝑋   𝑥,𝑍   𝑥,𝑚   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem fnlimcnv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnlimcnv.4 . . . . 5 (𝜑𝑋𝐷)
2 fveq2 6861 . . . . . . . 8 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
32mpteq2dv 5204 . . . . . . 7 (𝑦 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
43eleq1d 2814 . . . . . 6 (𝑦 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5 fnlimcnv.2 . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2892 . . . . . . . . 9 𝑥𝑍
7 nfcv 2892 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimcnv.1 . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2892 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6871 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5918 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 4991 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 4990 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2892 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1914 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2892 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6871 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 5208 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2892 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2907 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 5204 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2814 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrabw 3444 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
255, 24eqtri 2753 . . . . . 6 𝐷 = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
264, 25elrab2 3665 . . . . 5 (𝑋𝐷 ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
271, 26sylib 218 . . . 4 (𝜑 → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
2827simprd 495 . . 3 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
29 climdm 15527 . . 3 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3028, 29sylib 218 . 2 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
31 nfrab1 3429 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
325, 31nfcxfr 2890 . . . 4 𝑥𝐷
33 fnlimcnv.3 . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
3432, 8, 33, 1fnlimfv 45668 . . 3 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3534eqcomd 2736 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = (𝐺𝑋))
3630, 35breqtrd 5136 1 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  {crab 3408   ciun 4958   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  cuz 12800  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  fnlimabslt  45684
  Copyright terms: Public domain W3C validator