| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimcnv | Structured version Visualization version GIF version | ||
| Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fnlimcnv.1 | ⊢ Ⅎ𝑥𝐹 |
| fnlimcnv.2 | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| fnlimcnv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
| fnlimcnv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| fnlimcnv | ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnlimcnv.4 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
| 3 | 2 | mpteq2dv 5204 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 4 | 3 | eleq1d 2814 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 5 | fnlimcnv.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 6 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑍 | |
| 7 | nfcv 2892 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(ℤ≥‘𝑛) | |
| 8 | fnlimcnv.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐹 | |
| 9 | nfcv 2892 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑚 | |
| 10 | 8, 9 | nffv 6871 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
| 11 | 10 | nfdm 5918 | . . . . . . . . . 10 ⊢ Ⅎ𝑥dom (𝐹‘𝑚) |
| 12 | 7, 11 | nfiin 4991 | . . . . . . . . 9 ⊢ Ⅎ𝑥∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 13 | 6, 12 | nfiun 4990 | . . . . . . . 8 ⊢ Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 14 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑦∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
| 15 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ | |
| 16 | nfcv 2892 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑦 | |
| 17 | 10, 16 | nffv 6871 | . . . . . . . . . 10 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
| 18 | 6, 17 | nfmpt 5208 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
| 19 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom ⇝ | |
| 20 | 18, 19 | nfel 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ |
| 21 | fveq2 6861 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
| 22 | 21 | mpteq2dv 5204 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
| 23 | 22 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ )) |
| 24 | 13, 14, 15, 20, 23 | cbvrabw 3444 | . . . . . . 7 ⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
| 25 | 5, 24 | eqtri 2753 | . . . . . 6 ⊢ 𝐷 = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
| 26 | 4, 25 | elrab2 3665 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 27 | 1, 26 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 28 | 27 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
| 29 | climdm 15527 | . . 3 ⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 31 | nfrab1 3429 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
| 32 | 5, 31 | nfcxfr 2890 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
| 33 | fnlimcnv.3 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
| 34 | 32, 8, 33, 1 | fnlimfv 45668 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 35 | 34 | eqcomd 2736 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) = (𝐺‘𝑋)) |
| 36 | 30, 35 | breqtrd 5136 | 1 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 {crab 3408 ∪ ciun 4958 ∩ ciin 4959 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 ℤ≥cuz 12800 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 |
| This theorem is referenced by: fnlimabslt 45684 |
| Copyright terms: Public domain | W3C validator |