![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimcnv | Structured version Visualization version GIF version |
Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimcnv.1 | ⊢ Ⅎ𝑥𝐹 |
fnlimcnv.2 | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
fnlimcnv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimcnv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimcnv | ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimcnv.4 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
3 | 2 | mpteq2dv 5268 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
4 | 3 | eleq1d 2829 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
5 | fnlimcnv.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
6 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑍 | |
7 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(ℤ≥‘𝑛) | |
8 | fnlimcnv.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐹 | |
9 | nfcv 2908 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑚 | |
10 | 8, 9 | nffv 6930 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
11 | 10 | nfdm 5976 | . . . . . . . . . 10 ⊢ Ⅎ𝑥dom (𝐹‘𝑚) |
12 | 7, 11 | nfiin 5047 | . . . . . . . . 9 ⊢ Ⅎ𝑥∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
13 | 6, 12 | nfiun 5046 | . . . . . . . 8 ⊢ Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
14 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑦∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
15 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ | |
16 | nfcv 2908 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑦 | |
17 | 10, 16 | nffv 6930 | . . . . . . . . . 10 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
18 | 6, 17 | nfmpt 5273 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
19 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom ⇝ | |
20 | 18, 19 | nfel 2923 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ |
21 | fveq2 6920 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
22 | 21 | mpteq2dv 5268 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
23 | 22 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ )) |
24 | 13, 14, 15, 20, 23 | cbvrabw 3481 | . . . . . . 7 ⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
25 | 5, 24 | eqtri 2768 | . . . . . 6 ⊢ 𝐷 = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
26 | 4, 25 | elrab2 3711 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
27 | 1, 26 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
28 | 27 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
29 | climdm 15600 | . . 3 ⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | |
30 | 28, 29 | sylib 218 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
31 | nfrab1 3464 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
32 | 5, 31 | nfcxfr 2906 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
33 | fnlimcnv.3 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
34 | 32, 8, 33, 1 | fnlimfv 45584 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
35 | 34 | eqcomd 2746 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) = (𝐺‘𝑋)) |
36 | 30, 35 | breqtrd 5192 | 1 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 {crab 3443 ∪ ciun 5015 ∩ ciin 5016 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 ℤ≥cuz 12903 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 |
This theorem is referenced by: fnlimabslt 45600 |
Copyright terms: Public domain | W3C validator |