![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimcnv | Structured version Visualization version GIF version |
Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimcnv.1 | ⊢ Ⅎ𝑥𝐹 |
fnlimcnv.2 | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
fnlimcnv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimcnv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimcnv | ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimcnv.4 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | fveq2 6843 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
3 | 2 | mpteq2dv 5208 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
4 | 3 | eleq1d 2819 | . . . . . 6 ⊢ (𝑦 = 𝑋 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
5 | fnlimcnv.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
6 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑍 | |
7 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(ℤ≥‘𝑛) | |
8 | fnlimcnv.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐹 | |
9 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝑚 | |
10 | 8, 9 | nffv 6853 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
11 | 10 | nfdm 5907 | . . . . . . . . . 10 ⊢ Ⅎ𝑥dom (𝐹‘𝑚) |
12 | 7, 11 | nfiin 4986 | . . . . . . . . 9 ⊢ Ⅎ𝑥∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
13 | 6, 12 | nfiun 4985 | . . . . . . . 8 ⊢ Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
14 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑦∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
15 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑦(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ | |
16 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑦 | |
17 | 10, 16 | nffv 6853 | . . . . . . . . . 10 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
18 | 6, 17 | nfmpt 5213 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
19 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom ⇝ | |
20 | 18, 19 | nfel 2918 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ |
21 | fveq2 6843 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
22 | 21 | mpteq2dv 5208 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
23 | 22 | eleq1d 2819 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ )) |
24 | 13, 14, 15, 20, 23 | cbvrabw 3438 | . . . . . . 7 ⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
25 | 5, 24 | eqtri 2761 | . . . . . 6 ⊢ 𝐷 = {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
26 | 4, 25 | elrab2 3649 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
27 | 1, 26 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
28 | 27 | simprd 497 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
29 | climdm 15442 | . . 3 ⊢ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | |
30 | 28, 29 | sylib 217 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
31 | nfrab1 3425 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
32 | 5, 31 | nfcxfr 2902 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
33 | fnlimcnv.3 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
34 | 32, 8, 33, 1 | fnlimfv 43990 | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
35 | 34 | eqcomd 2739 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) = (𝐺‘𝑋)) |
36 | 30, 35 | breqtrd 5132 | 1 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 {crab 3406 ∪ ciun 4955 ∩ ciin 4956 class class class wbr 5106 ↦ cmpt 5189 dom cdm 5634 ‘cfv 6497 ℤ≥cuz 12768 ⇝ cli 15372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 |
This theorem is referenced by: fnlimabslt 44006 |
Copyright terms: Public domain | W3C validator |