Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimcnv Structured version   Visualization version   GIF version

Theorem fnlimcnv 45623
Description: The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimcnv.1 𝑥𝐹
fnlimcnv.2 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimcnv.3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimcnv.4 (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimcnv (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Distinct variable groups:   𝑚,𝑋   𝑥,𝑍   𝑥,𝑚   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚,𝑛)   𝐺(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑛)   𝑍(𝑚,𝑛)

Proof of Theorem fnlimcnv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnlimcnv.4 . . . . 5 (𝜑𝑋𝐷)
2 fveq2 6907 . . . . . . . 8 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
32mpteq2dv 5250 . . . . . . 7 (𝑦 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
43eleq1d 2824 . . . . . 6 (𝑦 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5 fnlimcnv.2 . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2903 . . . . . . . . 9 𝑥𝑍
7 nfcv 2903 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimcnv.1 . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2903 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6917 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5965 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 5029 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 5028 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2903 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1912 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2903 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6917 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 5255 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2903 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2918 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 5250 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2824 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrabw 3471 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
255, 24eqtri 2763 . . . . . 6 𝐷 = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
264, 25elrab2 3698 . . . . 5 (𝑋𝐷 ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
271, 26sylib 218 . . . 4 (𝜑 → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
2827simprd 495 . . 3 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
29 climdm 15587 . . 3 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3028, 29sylib 218 . 2 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
31 nfrab1 3454 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
325, 31nfcxfr 2901 . . . 4 𝑥𝐷
33 fnlimcnv.3 . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
3432, 8, 33, 1fnlimfv 45619 . . 3 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
3534eqcomd 2741 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = (𝐺𝑋))
3630, 35breqtrd 5174 1 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wnfc 2888  {crab 3433   ciun 4996   ciin 4997   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  cuz 12876  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  fnlimabslt  45635
  Copyright terms: Public domain W3C validator