| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim1NEW | Structured version Visualization version GIF version | ||
| Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim1NEW | ⊢ ¬ Lim 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6362 | . 2 ⊢ ∅ ∈ On | |
| 2 | nlimsuc 43414 | . . 3 ⊢ (∅ ∈ On → ¬ Lim suc ∅) | |
| 3 | df-1o 8388 | . . . 4 ⊢ 1o = suc ∅ | |
| 4 | limeq 6319 | . . . 4 ⊢ (1o = suc ∅ → (Lim 1o ↔ Lim suc ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 1o ↔ Lim suc ∅) |
| 6 | 2, 5 | sylnibr 329 | . 2 ⊢ (∅ ∈ On → ¬ Lim 1o) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4284 Oncon0 6307 Lim wlim 6308 suc csuc 6309 1oc1o 8381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-1o 8388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |