Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim1NEW Structured version   Visualization version   GIF version

Theorem nlim1NEW 43483
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim1NEW ¬ Lim 1o

Proof of Theorem nlim1NEW
StepHypRef Expression
1 0elon 6361 . 2 ∅ ∈ On
2 nlimsuc 43482 . . 3 (∅ ∈ On → ¬ Lim suc ∅)
3 df-1o 8385 . . . 4 1o = suc ∅
4 limeq 6318 . . . 4 (1o = suc ∅ → (Lim 1o ↔ Lim suc ∅))
53, 4ax-mp 5 . . 3 (Lim 1o ↔ Lim suc ∅)
62, 5sylnibr 329 . 2 (∅ ∈ On → ¬ Lim 1o)
71, 6ax-mp 5 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  c0 4280  Oncon0 6306  Lim wlim 6307  suc csuc 6308  1oc1o 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-1o 8385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator