| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim1NEW | Structured version Visualization version GIF version | ||
| Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim1NEW | ⊢ ¬ Lim 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 2 | nlimsuc 43482 | . . 3 ⊢ (∅ ∈ On → ¬ Lim suc ∅) | |
| 3 | df-1o 8385 | . . . 4 ⊢ 1o = suc ∅ | |
| 4 | limeq 6318 | . . . 4 ⊢ (1o = suc ∅ → (Lim 1o ↔ Lim suc ∅)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 1o ↔ Lim suc ∅) |
| 6 | 2, 5 | sylnibr 329 | . 2 ⊢ (∅ ∈ On → ¬ Lim 1o) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∅c0 4280 Oncon0 6306 Lim wlim 6307 suc csuc 6308 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |