Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim1NEW Structured version   Visualization version   GIF version

Theorem nlim1NEW 43431
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim1NEW ¬ Lim 1o

Proof of Theorem nlim1NEW
StepHypRef Expression
1 0elon 6387 . 2 ∅ ∈ On
2 nlimsuc 43430 . . 3 (∅ ∈ On → ¬ Lim suc ∅)
3 df-1o 8434 . . . 4 1o = suc ∅
4 limeq 6344 . . . 4 (1o = suc ∅ → (Lim 1o ↔ Lim suc ∅))
53, 4ax-mp 5 . . 3 (Lim 1o ↔ Lim suc ∅)
62, 5sylnibr 329 . 2 (∅ ∈ On → ¬ Lim 1o)
71, 6ax-mp 5 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  c0 4296  Oncon0 6332  Lim wlim 6333  suc csuc 6334  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-1o 8434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator