Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim2NEW Structured version   Visualization version   GIF version

Theorem nlim2NEW 43144
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim2NEW ¬ Lim 2o

Proof of Theorem nlim2NEW
StepHypRef Expression
1 1on 8497 . 2 1o ∈ On
2 nlimsuc 43142 . . 3 (1o ∈ On → ¬ Lim suc 1o)
3 df-2o 8486 . . . 4 2o = suc 1o
4 limeq 6377 . . . 4 (2o = suc 1o → (Lim 2o ↔ Lim suc 1o))
53, 4ax-mp 5 . . 3 (Lim 2o ↔ Lim suc 1o)
62, 5sylnibr 328 . 2 (1o ∈ On → ¬ Lim 2o)
71, 6ax-mp 5 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1534  wcel 2099  Oncon0 6365  Lim wlim 6366  suc csuc 6367  1oc1o 8478  2oc2o 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-opab 5206  df-tr 5261  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-1o 8485  df-2o 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator