Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim2NEW Structured version   Visualization version   GIF version

Theorem nlim2NEW 42194
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim2NEW ¬ Lim 2o

Proof of Theorem nlim2NEW
StepHypRef Expression
1 1on 8478 . 2 1o ∈ On
2 nlimsuc 42192 . . 3 (1o ∈ On → ¬ Lim suc 1o)
3 df-2o 8467 . . . 4 2o = suc 1o
4 limeq 6377 . . . 4 (2o = suc 1o → (Lim 2o ↔ Lim suc 1o))
53, 4ax-mp 5 . . 3 (Lim 2o ↔ Lim suc 1o)
62, 5sylnibr 329 . 2 (1o ∈ On → ¬ Lim 2o)
71, 6ax-mp 5 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1542  wcel 2107  Oncon0 6365  Lim wlim 6366  suc csuc 6367  1oc1o 8459  2oc2o 8460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-1o 8466  df-2o 8467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator