| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim2NEW | Structured version Visualization version GIF version | ||
| Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim2NEW | ⊢ ¬ Lim 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8392 | . 2 ⊢ 1o ∈ On | |
| 2 | nlimsuc 43474 | . . 3 ⊢ (1o ∈ On → ¬ Lim suc 1o) | |
| 3 | df-2o 8381 | . . . 4 ⊢ 2o = suc 1o | |
| 4 | limeq 6313 | . . . 4 ⊢ (2o = suc 1o → (Lim 2o ↔ Lim suc 1o)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 2o ↔ Lim suc 1o) |
| 6 | 2, 5 | sylnibr 329 | . 2 ⊢ (1o ∈ On → ¬ Lim 2o) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Oncon0 6301 Lim wlim 6302 suc csuc 6303 1oc1o 8373 2oc2o 8374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-1o 8380 df-2o 8381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |