![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim2NEW | Structured version Visualization version GIF version |
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.) |
Ref | Expression |
---|---|
nlim2NEW | ⊢ ¬ Lim 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8497 | . 2 ⊢ 1o ∈ On | |
2 | nlimsuc 43142 | . . 3 ⊢ (1o ∈ On → ¬ Lim suc 1o) | |
3 | df-2o 8486 | . . . 4 ⊢ 2o = suc 1o | |
4 | limeq 6377 | . . . 4 ⊢ (2o = suc 1o → (Lim 2o ↔ Lim suc 1o)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 2o ↔ Lim suc 1o) |
6 | 2, 5 | sylnibr 328 | . 2 ⊢ (1o ∈ On → ¬ Lim 2o) |
7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1534 ∈ wcel 2099 Oncon0 6365 Lim wlim 6366 suc csuc 6367 1oc1o 8478 2oc2o 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-1o 8485 df-2o 8486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |