Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim2NEW Structured version   Visualization version   GIF version

Theorem nlim2NEW 41789
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim2NEW ¬ Lim 2o

Proof of Theorem nlim2NEW
StepHypRef Expression
1 1on 8429 . 2 1o ∈ On
2 nlimsuc 41787 . . 3 (1o ∈ On → ¬ Lim suc 1o)
3 df-2o 8418 . . . 4 2o = suc 1o
4 limeq 6334 . . . 4 (2o = suc 1o → (Lim 2o ↔ Lim suc 1o))
53, 4ax-mp 5 . . 3 (Lim 2o ↔ Lim suc 1o)
62, 5sylnibr 329 . 2 (1o ∈ On → ¬ Lim 2o)
71, 6ax-mp 5 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1542  wcel 2107  Oncon0 6322  Lim wlim 6323  suc csuc 6324  1oc1o 8410  2oc2o 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-1o 8417  df-2o 8418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator