Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim2NEW Structured version   Visualization version   GIF version

Theorem nlim2NEW 43405
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim2NEW ¬ Lim 2o

Proof of Theorem nlim2NEW
StepHypRef Expression
1 1on 8423 . 2 1o ∈ On
2 nlimsuc 43403 . . 3 (1o ∈ On → ¬ Lim suc 1o)
3 df-2o 8412 . . . 4 2o = suc 1o
4 limeq 6332 . . . 4 (2o = suc 1o → (Lim 2o ↔ Lim suc 1o))
53, 4ax-mp 5 . . 3 (Lim 2o ↔ Lim suc 1o)
62, 5sylnibr 329 . 2 (1o ∈ On → ¬ Lim 2o)
71, 6ax-mp 5 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Oncon0 6320  Lim wlim 6321  suc csuc 6322  1oc1o 8404  2oc2o 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-1o 8411  df-2o 8412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator