Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim2NEW Structured version   Visualization version   GIF version

Theorem nlim2NEW 43476
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim2NEW ¬ Lim 2o

Proof of Theorem nlim2NEW
StepHypRef Expression
1 1on 8392 . 2 1o ∈ On
2 nlimsuc 43474 . . 3 (1o ∈ On → ¬ Lim suc 1o)
3 df-2o 8381 . . . 4 2o = suc 1o
4 limeq 6313 . . . 4 (2o = suc 1o → (Lim 2o ↔ Lim suc 1o))
53, 4ax-mp 5 . . 3 (Lim 2o ↔ Lim suc 1o)
62, 5sylnibr 329 . 2 (1o ∈ On → ¬ Lim 2o)
71, 6ax-mp 5 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  Oncon0 6301  Lim wlim 6302  suc csuc 6303  1oc1o 8373  2oc2o 8374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-1o 8380  df-2o 8381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator