| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0 | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 12529 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3979 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Copyright terms: Public domain | W3C validator |