Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnnn0 | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 11972 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3871 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Copyright terms: Public domain | W3C validator |