MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem2 Structured version   Visualization version   GIF version

Theorem pserdvlem2 25587
Description: Lemma for pserdv 25588. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdvlem2 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem2
Dummy variables 𝑚 𝑠 𝑤 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12620 . 2 0 = (ℤ‘0)
2 cnelprrecn 10964 . . 3 ℂ ∈ {ℝ, ℂ}
32a1i 11 . 2 ((𝜑𝑎𝑆) → ℂ ∈ {ℝ, ℂ})
4 0zd 12331 . 2 ((𝜑𝑎𝑆) → 0 ∈ ℤ)
5 fzfid 13693 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑘) ∈ Fin)
6 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 pserf.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
87ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
9 pserdv.b . . . . . . . . . . 11 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
10 cnxmet 23936 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
11 0cnd 10968 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
12 pserf.f . . . . . . . . . . . . . . 15 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
13 pserf.r . . . . . . . . . . . . . . 15 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.s . . . . . . . . . . . . . . 15 𝑆 = (abs “ (0[,)𝑅))
15 psercn.m . . . . . . . . . . . . . . 15 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
166, 12, 7, 13, 14, 15pserdvlem1 25586 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
1716simp1d 1141 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
1817rpxrd 12773 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
19 blssm 23571 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
2010, 11, 18, 19mp3an2i 1465 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
219, 20eqsstrid 3969 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
2221adantr 481 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℂ)
2322sselda 3921 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
246, 8, 23psergf 25571 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
25 elfznn0 13349 . . . . . . 7 (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℕ0)
26 ffvelrn 6959 . . . . . . 7 (((𝐺𝑦):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
2724, 25, 26syl2an 596 . . . . . 6 (((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑘)) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
285, 27fsumcl 15445 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) ∈ ℂ)
2928fmpttd 6989 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
30 cnex 10952 . . . . 5 ℂ ∈ V
319ovexi 7309 . . . . 5 𝐵 ∈ V
3230, 31elmap 8659 . . . 4 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
3329, 32sylibr 233 . . 3 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵))
3433fmpttd 6989 . 2 ((𝜑𝑎𝑆) → (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))):ℕ0⟶(ℂ ↑m 𝐵))
356, 12, 7, 13, 14, 15psercn 25585 . . . . 5 (𝜑𝐹 ∈ (𝑆cn→ℂ))
36 cncff 24056 . . . . 5 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
3735, 36syl 17 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
3837adantr 481 . . 3 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
396, 12, 7, 13, 14, 16psercnlem2 25583 . . . . . 6 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
4039simp2d 1142 . . . . 5 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
419, 40eqsstrid 3969 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
4239simp3d 1143 . . . 4 ((𝜑𝑎𝑆) → (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)
4341, 42sstrd 3931 . . 3 ((𝜑𝑎𝑆) → 𝐵𝑆)
4438, 43fssresd 6641 . 2 ((𝜑𝑎𝑆) → (𝐹𝐵):𝐵⟶ℂ)
45 0zd 12331 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℤ)
46 eqidd 2739 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) = ((𝐺𝑧)‘𝑗))
477ad2antrr 723 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝐴:ℕ0⟶ℂ)
4821sselda 3921 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ ℂ)
496, 47, 48psergf 25571 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐺𝑧):ℕ0⟶ℂ)
5049ffvelrnda 6961 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) ∈ ℂ)
5148abscld 15148 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ)
5251rexrd 11025 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ*)
5318adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
54 iccssxr 13162 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
556, 7, 13radcnvcl 25576 . . . . . . . . 9 (𝜑𝑅 ∈ (0[,]+∞))
5654, 55sselid 3919 . . . . . . . 8 (𝜑𝑅 ∈ ℝ*)
5756ad2antrr 723 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑅 ∈ ℝ*)
58 0cn 10967 . . . . . . . . . 10 0 ∈ ℂ
59 eqid 2738 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
6059cnmetdval 23934 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6148, 58, 60sylancl 586 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6248subid1d 11321 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 − 0) = 𝑧)
6362fveq2d 6778 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
6461, 63eqtrd 2778 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
65 simpr 485 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝐵)
6665, 9eleqtrdi 2849 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
6710a1i 11 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
68 0cnd 10968 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℂ)
69 elbl3 23545 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7067, 53, 68, 48, 69syl22anc 836 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7166, 70mpbid 231 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2))
7264, 71eqbrtrrd 5098 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < (((abs‘𝑎) + 𝑀) / 2))
7316simp3d 1143 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7473adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7552, 53, 57, 72, 74xrlttrd 12893 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < 𝑅)
766, 47, 13, 48, 75radcnvlt2 25578 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ∈ dom ⇝ )
771, 45, 46, 50, 76isumclim2 15470 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
7843sselda 3921 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝑆)
79 fveq2 6774 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
8079fveq1d 6776 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑗) = ((𝐺𝑧)‘𝑗))
8180sumeq2sdv 15416 . . . . . 6 (𝑦 = 𝑧 → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
82 sumex 15399 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗) ∈ V
8381, 12, 82fvmpt 6875 . . . . 5 (𝑧𝑆 → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8478, 83syl 17 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8577, 84breqtrrd 5102 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ (𝐹𝑧))
86 oveq2 7283 . . . . . . . . . . 11 (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚))
8786sumeq1d 15413 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
8887mpteq2dv 5176 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
89 eqid 2738 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))) = (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))
9031mptex 7099 . . . . . . . . 9 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) ∈ V
9188, 89, 90fvmpt 6875 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9291adantl 482 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9392fveq1d 6776 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧))
9479fveq1d 6776 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑖) = ((𝐺𝑧)‘𝑖))
9594sumeq2sdv 15416 . . . . . . . 8 (𝑦 = 𝑧 → Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
96 eqid 2738 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
97 sumex 15399 . . . . . . . 8 Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) ∈ V
9895, 96, 97fvmpt 6875 . . . . . . 7 (𝑧𝐵 → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
9998ad2antlr 724 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
100 eqidd 2739 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) = ((𝐺𝑧)‘𝑖))
101 simpr 485 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
102101, 1eleqtrdi 2849 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
10349adantr 481 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐺𝑧):ℕ0⟶ℂ)
104 elfznn0 13349 . . . . . . . 8 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
105 ffvelrn 6959 . . . . . . . 8 (((𝐺𝑧):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
106103, 104, 105syl2an 596 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
107100, 102, 106fsumser 15442 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) = (seq0( + , (𝐺𝑧))‘𝑚))
10893, 99, 1073eqtrd 2782 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = (seq0( + , (𝐺𝑧))‘𝑚))
109108mpteq2dva 5174 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
110 0z 12330 . . . . . . 7 0 ∈ ℤ
111 seqfn 13733 . . . . . . 7 (0 ∈ ℤ → seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
112110, 111ax-mp 5 . . . . . 6 seq0( + , (𝐺𝑧)) Fn (ℤ‘0)
1131fneq2i 6531 . . . . . 6 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
114112, 113mpbir 230 . . . . 5 seq0( + , (𝐺𝑧)) Fn ℕ0
115 dffn5 6828 . . . . 5 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
116114, 115mpbi 229 . . . 4 seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚))
117109, 116eqtr4di 2796 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = seq0( + , (𝐺𝑧)))
118 fvres 6793 . . . 4 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
119118adantl 482 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
12085, 117, 1193brtr4d 5106 . 2 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) ⇝ ((𝐹𝐵)‘𝑧))
12191adantl 482 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
122121oveq2d 7291 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))))
123 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
124123cnfldtopon 23946 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
125124toponrestid 22070 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1262a1i 11 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
127123cnfldtopn 23945 . . . . . . . . . 10 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
128127blopn 23656 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
12910, 11, 18, 128mp3an2i 1465 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
1309, 129eqeltrid 2843 . . . . . . 7 ((𝜑𝑎𝑆) → 𝐵 ∈ (TopOpen‘ℂfld))
131130adantr 481 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ∈ (TopOpen‘ℂfld))
132 fzfid 13693 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
1337ad2antrr 723 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
1341333ad2ant1 1132 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
13521adantr 481 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ⊆ ℂ)
136135sselda 3921 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1371363adant2 1130 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1386, 134, 137psergf 25571 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
1391043ad2ant2 1133 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
140138, 139ffvelrnd 6962 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
1412a1i 11 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ℂ ∈ {ℝ, ℂ})
142 ffvelrn 6959 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (𝐴𝑖) ∈ ℂ)
143133, 104, 142syl2an 596 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝐴𝑖) ∈ ℂ)
144143adantr 481 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝐴𝑖) ∈ ℂ)
145136adantlr 712 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
146 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
147104adantl 482 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
148 expcl 13800 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
149146, 147, 148syl2anr 597 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑖) ∈ ℂ)
150145, 149syldan 591 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝑦𝑖) ∈ ℂ)
151144, 150mulcld 10995 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · (𝑦𝑖)) ∈ ℂ)
152 ovexd 7310 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ V)
153 c0ex 10969 . . . . . . . . . . 11 0 ∈ V
154 ovex 7308 . . . . . . . . . . 11 (𝑖 · (𝑦↑(𝑖 − 1))) ∈ V
155153, 154ifex 4509 . . . . . . . . . 10 if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V
156155a1i 11 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
157155a1i 11 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
158 dvexp2 25118 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
159147, 158syl 17 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
16021ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ⊆ ℂ)
161130ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ∈ (TopOpen‘ℂfld))
162141, 149, 157, 159, 160, 125, 123, 161dvmptres 25127 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ (𝑦𝑖))) = (𝑦𝐵 ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
163141, 150, 156, 162, 143dvmptcmul 25128 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
164141, 151, 152, 163dvmptcl 25123 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
1651643impa 1109 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
166104ad2antlr 724 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
1676pserval2 25570 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
168145, 166, 167syl2anc 584 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
169168mpteq2dva 5174 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖))))
170169oveq2d 7291 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))))
171170, 163eqtrd 2778 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
172125, 123, 126, 131, 132, 140, 165, 171dvmptfsum 25139 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
173122, 172eqtrd 2778 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
174173mpteq2dva 5174 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
175 nnssnn0 12236 . . . . . 6 ℕ ⊆ ℕ0
176 resmpt 5945 . . . . . 6 (ℕ ⊆ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
177175, 176ax-mp 5 . . . . 5 ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
178 oveq1 7282 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎𝑖) = (𝑥𝑖))
179178oveq2d 7291 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)))
180179mpteq2dv 5176 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))))
181 oveq1 7282 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1))
182 fvoveq1 7298 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑛 + 1)))
183181, 182oveq12d 7293 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
184 oveq2 7283 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑥𝑖) = (𝑥𝑛))
185183, 184oveq12d 7293 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
186185cbvmptv 5187 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
187 oveq1 7282 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
188 fvoveq1 7298 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐴‘(𝑚 + 1)) = (𝐴‘(𝑛 + 1)))
189187, 188oveq12d 7293 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
190 eqid 2738 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) = (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
191 ovex 7308 . . . . . . . . . . . . . 14 ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) ∈ V
192189, 190, 191fvmpt 6875 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
193192oveq1d 7290 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
194193mpteq2ia 5177 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
195186, 194eqtr4i 2769 . . . . . . . . . 10 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)))
196180, 195eqtrdi 2794 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
197196cbvmptv 5187 . . . . . . . 8 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
198 fveq2 6774 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))
199198fveq1d 6776 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
200199sumeq2sdv 15416 . . . . . . . . 9 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
201200cbvmptv 5187 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑧𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
202 peano2nn0 12273 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
203202adantl 482 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℕ0)
204203nn0cnd 12295 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℂ)
205133, 203ffvelrnd 6962 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 + 1)) ∈ ℂ)
206204, 205mulcld 10995 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) ∈ ℂ)
207206fmpttd 6989 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))):ℕ0⟶ℂ)
208 fveq2 6774 . . . . . . . . . . . 12 (𝑟 = 𝑗 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗))
209208seqeq3d 13729 . . . . . . . . . . 11 (𝑟 = 𝑗 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)))
210209eleq1d 2823 . . . . . . . . . 10 (𝑟 = 𝑗 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ ))
211210cbvrabv 3426 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ } = {𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }
212211supeq1i 9206 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }, ℝ*, < )
213198seqeq3d 13729 . . . . . . . . . . . 12 (𝑦 = 𝑧 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)))
214213fveq1d 6776 . . . . . . . . . . 11 (𝑦 = 𝑧 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
215214cbvmptv 5187 . . . . . . . . . 10 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
216 fveq2 6774 . . . . . . . . . . 11 (𝑗 = 𝑚 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚))
217216mpteq2dv 5176 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
218215, 217eqtrid 2790 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
219218cbvmptv 5187 . . . . . . . 8 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑚 ∈ ℕ0 ↦ (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
22017rpred 12772 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
2216, 12, 7, 13, 14, 15psercnlem1 25584 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
222221simp1d 1141 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
223222rpxrd 12773 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
224197, 207, 212radcnvcl 25576 . . . . . . . . . 10 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
22554, 224sselid 3919 . . . . . . . . 9 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
226221simp2d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
227 cnvimass 5989 . . . . . . . . . . . . . . . 16 (abs “ (0[,)𝑅)) ⊆ dom abs
228 absf 15049 . . . . . . . . . . . . . . . . 17 abs:ℂ⟶ℝ
229228fdmi 6612 . . . . . . . . . . . . . . . 16 dom abs = ℂ
230227, 229sseqtri 3957 . . . . . . . . . . . . . . 15 (abs “ (0[,)𝑅)) ⊆ ℂ
23114, 230eqsstri 3955 . . . . . . . . . . . . . 14 𝑆 ⊆ ℂ
232231a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
233232sselda 3921 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
234233abscld 15148 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
235222rpred 12772 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
236 avglt2 12212 . . . . . . . . . . 11 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
237234, 235, 236syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
238226, 237mpbid 231 . . . . . . . . 9 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
239222rpge0d 12776 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 0 ≤ 𝑀)
240235, 239absidd 15134 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) = 𝑀)
241222rpcnd 12774 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℂ)
242 oveq1 7282 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑀 → (𝑤𝑖) = (𝑀𝑖))
243242oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑀 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
244243mpteq2dv 5176 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
245 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → (𝑎𝑖) = (𝑤𝑖))
246245oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑤 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)))
247246mpteq2dv 5176 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑤 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
248247cbvmptv 5187 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑤 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
249 nn0ex 12239 . . . . . . . . . . . . . . . 16 0 ∈ V
250249mptex 7099 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) ∈ V
251244, 248, 250fvmpt 6875 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
252241, 251syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
253252seqeq3d 13729 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) = seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))))
254 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝐴𝑛) = (𝐴𝑖))
255 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑥𝑛) = (𝑥𝑖))
256254, 255oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑖) · (𝑥𝑖)))
257256cbvmptv 5187 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖)))
258 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑖) = (𝑦𝑖))
259258oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐴𝑖) · (𝑥𝑖)) = ((𝐴𝑖) · (𝑦𝑖)))
260259mpteq2dv 5176 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
261257, 260eqtrid 2790 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
262261cbvmptv 5187 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
2636, 262eqtri 2766 . . . . . . . . . . . . 13 𝐺 = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
264 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
265264seqeq3d 13729 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
266265eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
267266cbvrabv 3426 . . . . . . . . . . . . . . 15 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }
268267supeq1i 9206 . . . . . . . . . . . . . 14 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
26913, 268eqtri 2766 . . . . . . . . . . . . 13 𝑅 = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
270 eqid 2738 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
2717adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
272221simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
273240, 272eqbrtrd 5096 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑀) < 𝑅)
274263, 269, 270, 271, 241, 273dvradcnv 25580 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))) ∈ dom ⇝ )
275253, 274eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) ∈ dom ⇝ )
276197, 207, 212, 241, 275radcnvle 25579 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
277240, 276eqbrtrrd 5098 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
27818, 223, 225, 238, 277xrltletrd 12895 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
279197, 201, 207, 212, 219, 220, 278, 41pserulm 25581 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)))
28021sselda 3921 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
281 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎𝑖) = (𝑦𝑖))
282281oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
283282mpteq2dv 5176 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
284 eqid 2738 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))
285249mptex 7099 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) ∈ V
286283, 284, 285fvmpt 6875 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
287280, 286syl 17 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
288287adantr 481 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
289288fveq1d 6776 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
290 oveq1 7282 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
291 fvoveq1 7298 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑘 + 1)))
292290, 291oveq12d 7293 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
293 oveq2 7283 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑦𝑖) = (𝑦𝑘))
294292, 293oveq12d 7293 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
295 eqid 2738 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
296 ovex 7308 . . . . . . . . . . . 12 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
297294, 295, 296fvmpt 6875 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
298297adantl 482 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
299289, 298eqtrd 2778 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
300299sumeq2dv 15415 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
301300mpteq2dva 5174 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
302279, 301breqtrd 5100 . . . . . 6 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
303 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
304 1e0p1 12479 . . . . . . . . 9 1 = (0 + 1)
305304fveq2i 6777 . . . . . . . 8 (ℤ‘1) = (ℤ‘(0 + 1))
306303, 305eqtri 2766 . . . . . . 7 ℕ = (ℤ‘(0 + 1))
307 1zzd 12351 . . . . . . 7 ((𝜑𝑎𝑆) → 1 ∈ ℤ)
308 0zd 12331 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 0 ∈ ℤ)
309 peano2nn0 12273 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
310309nn0cnd 12295 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℂ)
311310adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℂ)
3127ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
313 ffvelrn 6959 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ0⟶ℂ ∧ (𝑖 + 1) ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
314312, 309, 313syl2an 596 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
315311, 314mulcld 10995 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) ∈ ℂ)
316280, 148sylan 580 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
317315, 316mulcld 10995 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) ∈ ℂ)
318287, 317fmpt3d 6990 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦):ℕ0⟶ℂ)
319318ffvelrnda 6961 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑚) ∈ ℂ)
3201, 308, 319serf 13751 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)):ℕ0⟶ℂ)
321320ffvelrnda 6961 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑗 ∈ ℕ0) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
322321an32s 649 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑦𝐵) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
323322fmpttd 6989 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
32430, 31elmap 8659 . . . . . . . . 9 ((𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
325323, 324sylibr 233 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵))
326325fmpttd 6989 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))):ℕ0⟶(ℂ ↑m 𝐵))
327 elfznn 13285 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ)
328327nnne0d 12023 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → 𝑖 ≠ 0)
329328neneqd 2948 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → ¬ 𝑖 = 0)
330329iffalsed 4470 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑚) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = (𝑖 · (𝑦↑(𝑖 − 1))))
331330oveq2d 7291 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑚) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
332331sumeq2i 15411 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))
333 1zzd 12351 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 1 ∈ ℤ)
334 nnz 12342 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
335334ad2antlr 724 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑚 ∈ ℤ)
336271ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
337327nnnn0d 12293 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ0)
338336, 337, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝐴𝑖) ∈ ℂ)
339327adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ)
340339nncnd 11989 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℂ)
341280adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
342 nnm1nn0 12274 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
343327, 342syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → (𝑖 − 1) ∈ ℕ0)
344 expcl 13800 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑖 − 1) ∈ ℕ0) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
345341, 343, 344syl2an 596 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
346340, 345mulcld 10995 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑖 · (𝑦↑(𝑖 − 1))) ∈ ℂ)
347338, 346mulcld 10995 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ ℂ)
348 fveq2 6774 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝐴𝑖) = (𝐴‘(𝑘 + 1)))
349 id 22 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
350 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑘 + 1) → (𝑖 − 1) = ((𝑘 + 1) − 1))
351350oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → (𝑦↑(𝑖 − 1)) = (𝑦↑((𝑘 + 1) − 1)))
352349, 351oveq12d 7293 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑖 · (𝑦↑(𝑖 − 1))) = ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
353348, 352oveq12d 7293 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
354333, 333, 335, 347, 353fsumshftm 15493 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
355332, 354eqtrid 2790 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
356 fz1ssfz0 13352 . . . . . . . . . . . . 13 (1...𝑚) ⊆ (0...𝑚)
357356a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (1...𝑚) ⊆ (0...𝑚))
358331adantl 482 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
359358, 347eqeltrd 2839 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
360 eldif 3897 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) ↔ (𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)))
361 elfzuz2 13261 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (0...𝑚) → 𝑚 ∈ (ℤ‘0))
362 elfzp12 13335 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (ℤ‘0) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
363361, 362syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝑚) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
364363ibi 266 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0...𝑚) → (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))
365364ord 861 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 = 0 → 𝑖 ∈ ((0 + 1)...𝑚)))
366365con1d 145 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 ∈ ((0 + 1)...𝑚) → 𝑖 = 0))
367366imp 407 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)) → 𝑖 = 0)
368360, 367sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) → 𝑖 = 0)
369304oveq1i 7285 . . . . . . . . . . . . . . . . . 18 (1...𝑚) = ((0 + 1)...𝑚)
370369difeq2i 4054 . . . . . . . . . . . . . . . . 17 ((0...𝑚) ∖ (1...𝑚)) = ((0...𝑚) ∖ ((0 + 1)...𝑚))
371368, 370eleq2s 2857 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 = 0)
372371adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → 𝑖 = 0)
373372iftrued 4467 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = 0)
374373oveq2d 7291 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · 0))
375 eldifi 4061 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ (0...𝑚))
376375, 104syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ ℕ0)
377336, 376, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → (𝐴𝑖) ∈ ℂ)
378377mul01d 11174 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · 0) = 0)
379374, 378eqtrd 2778 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = 0)
380 fzfid 13693 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
381357, 359, 379, 380fsumss 15437 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
382 1m1e0 12045 . . . . . . . . . . . . . 14 (1 − 1) = 0
383382oveq1i 7285 . . . . . . . . . . . . 13 ((1 − 1)...(𝑚 − 1)) = (0...(𝑚 − 1))
384383sumeq1i 15410 . . . . . . . . . . . 12 Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
385 elfznn0 13349 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑚 − 1)) → 𝑘 ∈ ℕ0)
386385adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℕ0)
387386, 297syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
388341adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑦 ∈ ℂ)
389388, 286syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
390389fveq1d 6776 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
391336adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝐴:ℕ0⟶ℂ)
392 peano2nn0 12273 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
393386, 392syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℕ0)
394391, 393ffvelrnd 6962 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
395393nn0cnd 12295 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℂ)
396 expcl 13800 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
397341, 385, 396syl2an 596 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦𝑘) ∈ ℂ)
398394, 395, 397mul12d 11184 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
399386nn0cnd 12295 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℂ)
400 ax-1cn 10929 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
401 pncan 11227 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
402399, 400, 401sylancl 586 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) − 1) = 𝑘)
403402oveq2d 7291 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) = (𝑦𝑘))
404403oveq2d 7291 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑦𝑘)))
405404oveq2d 7291 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))))
406395, 394, 397mulassd 10998 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
407398, 405, 4063eqtr4d 2788 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
408387, 390, 4073eqtr4d 2788 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
409 nnm1nn0 12274 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
410409adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
411410adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ ℕ0)
412411, 1eleqtrdi 2849 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ (ℤ‘0))
413403, 397eqeltrd 2839 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) ∈ ℂ)
414395, 413mulcld 10995 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) ∈ ℂ)
415394, 414mulcld 10995 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) ∈ ℂ)
416408, 412, 415fsumser 15442 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
417384, 416eqtrid 2790 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
418355, 381, 4173eqtr3d 2786 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
419418mpteq2dva 5174 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
420 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = (𝑚 − 1) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
421420mpteq2dv 5176 . . . . . . . . . . 11 (𝑗 = (𝑚 − 1) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
422 eqid 2738 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))
42331mptex 7099 . . . . . . . . . . 11 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))) ∈ V
424421, 422, 423fvmpt 6875 . . . . . . . . . 10 ((𝑚 − 1) ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
425410, 424syl 17 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
426419, 425eqtr4d 2781 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)))
427426mpteq2dva 5174 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ ↦ ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1))))
4281, 306, 4, 307, 326, 427ulmshft 25549 . . . . . 6 ((𝜑𝑎𝑆) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
429302, 428mpbid 231 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
430177, 429eqbrtrid 5109 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
431 1nn0 12249 . . . . . 6 1 ∈ ℕ0
432431a1i 11 . . . . 5 ((𝜑𝑎𝑆) → 1 ∈ ℕ0)
433 fzfid 13693 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
434164an32s 649 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
435433, 434fsumcl 15445 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
436435fmpttd 6989 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
43730, 31elmap 8659 . . . . . . 7 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
438436, 437sylibr 233 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵))
439438fmpttd 6989 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))):ℕ0⟶(ℂ ↑m 𝐵))
4401, 303, 432, 439ulmres 25547 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
441430, 440mpbird 256 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
442174, 441eqbrtrd 5096 . 2 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
4431, 3, 4, 34, 44, 120, 442ulmdv 25562 1 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  [,)cico 13081  [,]cicc 13082  ...cfz 13239  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  Σcsu 15397  TopOpenctopn 17132  ∞Metcxmet 20582  ballcbl 20584  fldccnfld 20597  cnccncf 24039   D cdv 25027  𝑢culm 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536
This theorem is referenced by:  pserdv  25588
  Copyright terms: Public domain W3C validator