MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem2 Structured version   Visualization version   GIF version

Theorem pserdvlem2 25693
Description: Lemma for pserdv 25694. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdvlem2 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem2
Dummy variables 𝑚 𝑠 𝑤 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12721 . 2 0 = (ℤ‘0)
2 cnelprrecn 11065 . . 3 ℂ ∈ {ℝ, ℂ}
32a1i 11 . 2 ((𝜑𝑎𝑆) → ℂ ∈ {ℝ, ℂ})
4 0zd 12432 . 2 ((𝜑𝑎𝑆) → 0 ∈ ℤ)
5 fzfid 13794 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑘) ∈ Fin)
6 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 pserf.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
87ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
9 pserdv.b . . . . . . . . . . 11 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
10 cnxmet 24042 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
11 0cnd 11069 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
12 pserf.f . . . . . . . . . . . . . . 15 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
13 pserf.r . . . . . . . . . . . . . . 15 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.s . . . . . . . . . . . . . . 15 𝑆 = (abs “ (0[,)𝑅))
15 psercn.m . . . . . . . . . . . . . . 15 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
166, 12, 7, 13, 14, 15pserdvlem1 25692 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
1716simp1d 1141 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
1817rpxrd 12874 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
19 blssm 23677 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
2010, 11, 18, 19mp3an2i 1465 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
219, 20eqsstrid 3980 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
2221adantr 481 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℂ)
2322sselda 3932 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
246, 8, 23psergf 25677 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
25 elfznn0 13450 . . . . . . 7 (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℕ0)
26 ffvelcdm 7015 . . . . . . 7 (((𝐺𝑦):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
2724, 25, 26syl2an 596 . . . . . 6 (((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑘)) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
285, 27fsumcl 15544 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) ∈ ℂ)
2928fmpttd 7045 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
30 cnex 11053 . . . . 5 ℂ ∈ V
319ovexi 7371 . . . . 5 𝐵 ∈ V
3230, 31elmap 8730 . . . 4 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
3329, 32sylibr 233 . . 3 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵))
3433fmpttd 7045 . 2 ((𝜑𝑎𝑆) → (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))):ℕ0⟶(ℂ ↑m 𝐵))
356, 12, 7, 13, 14, 15psercn 25691 . . . . 5 (𝜑𝐹 ∈ (𝑆cn→ℂ))
36 cncff 24162 . . . . 5 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
3735, 36syl 17 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
3837adantr 481 . . 3 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
396, 12, 7, 13, 14, 16psercnlem2 25689 . . . . . 6 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
4039simp2d 1142 . . . . 5 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
419, 40eqsstrid 3980 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
4239simp3d 1143 . . . 4 ((𝜑𝑎𝑆) → (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)
4341, 42sstrd 3942 . . 3 ((𝜑𝑎𝑆) → 𝐵𝑆)
4438, 43fssresd 6692 . 2 ((𝜑𝑎𝑆) → (𝐹𝐵):𝐵⟶ℂ)
45 0zd 12432 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℤ)
46 eqidd 2737 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) = ((𝐺𝑧)‘𝑗))
477ad2antrr 723 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝐴:ℕ0⟶ℂ)
4821sselda 3932 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ ℂ)
496, 47, 48psergf 25677 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐺𝑧):ℕ0⟶ℂ)
5049ffvelcdmda 7017 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) ∈ ℂ)
5148abscld 15247 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ)
5251rexrd 11126 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ*)
5318adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
54 iccssxr 13263 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
556, 7, 13radcnvcl 25682 . . . . . . . . 9 (𝜑𝑅 ∈ (0[,]+∞))
5654, 55sselid 3930 . . . . . . . 8 (𝜑𝑅 ∈ ℝ*)
5756ad2antrr 723 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑅 ∈ ℝ*)
58 0cn 11068 . . . . . . . . . 10 0 ∈ ℂ
59 eqid 2736 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
6059cnmetdval 24040 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6148, 58, 60sylancl 586 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6248subid1d 11422 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 − 0) = 𝑧)
6362fveq2d 6829 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
6461, 63eqtrd 2776 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
65 simpr 485 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝐵)
6665, 9eleqtrdi 2847 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
6710a1i 11 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
68 0cnd 11069 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℂ)
69 elbl3 23651 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7067, 53, 68, 48, 69syl22anc 836 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7166, 70mpbid 231 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2))
7264, 71eqbrtrrd 5116 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < (((abs‘𝑎) + 𝑀) / 2))
7316simp3d 1143 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7473adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7552, 53, 57, 72, 74xrlttrd 12994 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < 𝑅)
766, 47, 13, 48, 75radcnvlt2 25684 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ∈ dom ⇝ )
771, 45, 46, 50, 76isumclim2 15569 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
7843sselda 3932 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝑆)
79 fveq2 6825 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
8079fveq1d 6827 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑗) = ((𝐺𝑧)‘𝑗))
8180sumeq2sdv 15515 . . . . . 6 (𝑦 = 𝑧 → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
82 sumex 15498 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗) ∈ V
8381, 12, 82fvmpt 6931 . . . . 5 (𝑧𝑆 → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8478, 83syl 17 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8577, 84breqtrrd 5120 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ (𝐹𝑧))
86 oveq2 7345 . . . . . . . . . . 11 (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚))
8786sumeq1d 15512 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
8887mpteq2dv 5194 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
89 eqid 2736 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))) = (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))
9031mptex 7155 . . . . . . . . 9 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) ∈ V
9188, 89, 90fvmpt 6931 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9291adantl 482 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9392fveq1d 6827 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧))
9479fveq1d 6827 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑖) = ((𝐺𝑧)‘𝑖))
9594sumeq2sdv 15515 . . . . . . . 8 (𝑦 = 𝑧 → Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
96 eqid 2736 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
97 sumex 15498 . . . . . . . 8 Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) ∈ V
9895, 96, 97fvmpt 6931 . . . . . . 7 (𝑧𝐵 → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
9998ad2antlr 724 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
100 eqidd 2737 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) = ((𝐺𝑧)‘𝑖))
101 simpr 485 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
102101, 1eleqtrdi 2847 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
10349adantr 481 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐺𝑧):ℕ0⟶ℂ)
104 elfznn0 13450 . . . . . . . 8 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
105 ffvelcdm 7015 . . . . . . . 8 (((𝐺𝑧):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
106103, 104, 105syl2an 596 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
107100, 102, 106fsumser 15541 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) = (seq0( + , (𝐺𝑧))‘𝑚))
10893, 99, 1073eqtrd 2780 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = (seq0( + , (𝐺𝑧))‘𝑚))
109108mpteq2dva 5192 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
110 0z 12431 . . . . . . 7 0 ∈ ℤ
111 seqfn 13834 . . . . . . 7 (0 ∈ ℤ → seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
112110, 111ax-mp 5 . . . . . 6 seq0( + , (𝐺𝑧)) Fn (ℤ‘0)
1131fneq2i 6583 . . . . . 6 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
114112, 113mpbir 230 . . . . 5 seq0( + , (𝐺𝑧)) Fn ℕ0
115 dffn5 6884 . . . . 5 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
116114, 115mpbi 229 . . . 4 seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚))
117109, 116eqtr4di 2794 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = seq0( + , (𝐺𝑧)))
118 fvres 6844 . . . 4 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
119118adantl 482 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
12085, 117, 1193brtr4d 5124 . 2 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) ⇝ ((𝐹𝐵)‘𝑧))
12191adantl 482 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
122121oveq2d 7353 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))))
123 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
124123cnfldtopon 24052 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
125124toponrestid 22176 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1262a1i 11 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
127123cnfldtopn 24051 . . . . . . . . . 10 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
128127blopn 23762 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
12910, 11, 18, 128mp3an2i 1465 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
1309, 129eqeltrid 2841 . . . . . . 7 ((𝜑𝑎𝑆) → 𝐵 ∈ (TopOpen‘ℂfld))
131130adantr 481 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ∈ (TopOpen‘ℂfld))
132 fzfid 13794 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
1337ad2antrr 723 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
1341333ad2ant1 1132 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
13521adantr 481 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ⊆ ℂ)
136135sselda 3932 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1371363adant2 1130 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1386, 134, 137psergf 25677 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
1391043ad2ant2 1133 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
140138, 139ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
1412a1i 11 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ℂ ∈ {ℝ, ℂ})
142 ffvelcdm 7015 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (𝐴𝑖) ∈ ℂ)
143133, 104, 142syl2an 596 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝐴𝑖) ∈ ℂ)
144143adantr 481 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝐴𝑖) ∈ ℂ)
145136adantlr 712 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
146 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
147104adantl 482 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
148 expcl 13901 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
149146, 147, 148syl2anr 597 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑖) ∈ ℂ)
150145, 149syldan 591 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝑦𝑖) ∈ ℂ)
151144, 150mulcld 11096 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · (𝑦𝑖)) ∈ ℂ)
152 ovexd 7372 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ V)
153 c0ex 11070 . . . . . . . . . . 11 0 ∈ V
154 ovex 7370 . . . . . . . . . . 11 (𝑖 · (𝑦↑(𝑖 − 1))) ∈ V
155153, 154ifex 4523 . . . . . . . . . 10 if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V
156155a1i 11 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
157155a1i 11 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
158 dvexp2 25224 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
159147, 158syl 17 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
16021ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ⊆ ℂ)
161130ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ∈ (TopOpen‘ℂfld))
162141, 149, 157, 159, 160, 125, 123, 161dvmptres 25233 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ (𝑦𝑖))) = (𝑦𝐵 ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
163141, 150, 156, 162, 143dvmptcmul 25234 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
164141, 151, 152, 163dvmptcl 25229 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
1651643impa 1109 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
166104ad2antlr 724 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
1676pserval2 25676 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
168145, 166, 167syl2anc 584 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
169168mpteq2dva 5192 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖))))
170169oveq2d 7353 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))))
171170, 163eqtrd 2776 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
172125, 123, 126, 131, 132, 140, 165, 171dvmptfsum 25245 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
173122, 172eqtrd 2776 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
174173mpteq2dva 5192 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
175 nnssnn0 12337 . . . . . 6 ℕ ⊆ ℕ0
176 resmpt 5977 . . . . . 6 (ℕ ⊆ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
177175, 176ax-mp 5 . . . . 5 ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
178 oveq1 7344 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎𝑖) = (𝑥𝑖))
179178oveq2d 7353 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)))
180179mpteq2dv 5194 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))))
181 oveq1 7344 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1))
182 fvoveq1 7360 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑛 + 1)))
183181, 182oveq12d 7355 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
184 oveq2 7345 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑥𝑖) = (𝑥𝑛))
185183, 184oveq12d 7355 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
186185cbvmptv 5205 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
187 oveq1 7344 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
188 fvoveq1 7360 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐴‘(𝑚 + 1)) = (𝐴‘(𝑛 + 1)))
189187, 188oveq12d 7355 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
190 eqid 2736 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) = (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
191 ovex 7370 . . . . . . . . . . . . . 14 ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) ∈ V
192189, 190, 191fvmpt 6931 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
193192oveq1d 7352 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
194193mpteq2ia 5195 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
195186, 194eqtr4i 2767 . . . . . . . . . 10 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)))
196180, 195eqtrdi 2792 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
197196cbvmptv 5205 . . . . . . . 8 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
198 fveq2 6825 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))
199198fveq1d 6827 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
200199sumeq2sdv 15515 . . . . . . . . 9 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
201200cbvmptv 5205 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑧𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
202 peano2nn0 12374 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
203202adantl 482 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℕ0)
204203nn0cnd 12396 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℂ)
205133, 203ffvelcdmd 7018 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 + 1)) ∈ ℂ)
206204, 205mulcld 11096 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) ∈ ℂ)
207206fmpttd 7045 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))):ℕ0⟶ℂ)
208 fveq2 6825 . . . . . . . . . . . 12 (𝑟 = 𝑗 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗))
209208seqeq3d 13830 . . . . . . . . . . 11 (𝑟 = 𝑗 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)))
210209eleq1d 2821 . . . . . . . . . 10 (𝑟 = 𝑗 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ ))
211210cbvrabv 3413 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ } = {𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }
212211supeq1i 9304 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }, ℝ*, < )
213198seqeq3d 13830 . . . . . . . . . . . 12 (𝑦 = 𝑧 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)))
214213fveq1d 6827 . . . . . . . . . . 11 (𝑦 = 𝑧 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
215214cbvmptv 5205 . . . . . . . . . 10 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
216 fveq2 6825 . . . . . . . . . . 11 (𝑗 = 𝑚 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚))
217216mpteq2dv 5194 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
218215, 217eqtrid 2788 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
219218cbvmptv 5205 . . . . . . . 8 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑚 ∈ ℕ0 ↦ (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
22017rpred 12873 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
2216, 12, 7, 13, 14, 15psercnlem1 25690 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
222221simp1d 1141 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
223222rpxrd 12874 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
224197, 207, 212radcnvcl 25682 . . . . . . . . . 10 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
22554, 224sselid 3930 . . . . . . . . 9 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
226221simp2d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
227 cnvimass 6019 . . . . . . . . . . . . . . . 16 (abs “ (0[,)𝑅)) ⊆ dom abs
228 absf 15148 . . . . . . . . . . . . . . . . 17 abs:ℂ⟶ℝ
229228fdmi 6663 . . . . . . . . . . . . . . . 16 dom abs = ℂ
230227, 229sseqtri 3968 . . . . . . . . . . . . . . 15 (abs “ (0[,)𝑅)) ⊆ ℂ
23114, 230eqsstri 3966 . . . . . . . . . . . . . 14 𝑆 ⊆ ℂ
232231a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
233232sselda 3932 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
234233abscld 15247 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
235222rpred 12873 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
236 avglt2 12313 . . . . . . . . . . 11 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
237234, 235, 236syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
238226, 237mpbid 231 . . . . . . . . 9 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
239222rpge0d 12877 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 0 ≤ 𝑀)
240235, 239absidd 15233 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) = 𝑀)
241222rpcnd 12875 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℂ)
242 oveq1 7344 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑀 → (𝑤𝑖) = (𝑀𝑖))
243242oveq2d 7353 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑀 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
244243mpteq2dv 5194 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
245 oveq1 7344 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → (𝑎𝑖) = (𝑤𝑖))
246245oveq2d 7353 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑤 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)))
247246mpteq2dv 5194 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑤 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
248247cbvmptv 5205 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑤 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
249 nn0ex 12340 . . . . . . . . . . . . . . . 16 0 ∈ V
250249mptex 7155 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) ∈ V
251244, 248, 250fvmpt 6931 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
252241, 251syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
253252seqeq3d 13830 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) = seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))))
254 fveq2 6825 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝐴𝑛) = (𝐴𝑖))
255 oveq2 7345 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑥𝑛) = (𝑥𝑖))
256254, 255oveq12d 7355 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑖) · (𝑥𝑖)))
257256cbvmptv 5205 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖)))
258 oveq1 7344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑖) = (𝑦𝑖))
259258oveq2d 7353 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐴𝑖) · (𝑥𝑖)) = ((𝐴𝑖) · (𝑦𝑖)))
260259mpteq2dv 5194 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
261257, 260eqtrid 2788 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
262261cbvmptv 5205 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
2636, 262eqtri 2764 . . . . . . . . . . . . 13 𝐺 = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
264 fveq2 6825 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
265264seqeq3d 13830 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
266265eleq1d 2821 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
267266cbvrabv 3413 . . . . . . . . . . . . . . 15 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }
268267supeq1i 9304 . . . . . . . . . . . . . 14 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
26913, 268eqtri 2764 . . . . . . . . . . . . 13 𝑅 = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
270 eqid 2736 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
2717adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
272221simp3d 1143 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
273240, 272eqbrtrd 5114 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑀) < 𝑅)
274263, 269, 270, 271, 241, 273dvradcnv 25686 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))) ∈ dom ⇝ )
275253, 274eqeltrd 2837 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) ∈ dom ⇝ )
276197, 207, 212, 241, 275radcnvle 25685 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
277240, 276eqbrtrrd 5116 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
27818, 223, 225, 238, 277xrltletrd 12996 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
279197, 201, 207, 212, 219, 220, 278, 41pserulm 25687 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)))
28021sselda 3932 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
281 oveq1 7344 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎𝑖) = (𝑦𝑖))
282281oveq2d 7353 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
283282mpteq2dv 5194 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
284 eqid 2736 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))
285249mptex 7155 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) ∈ V
286283, 284, 285fvmpt 6931 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
287280, 286syl 17 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
288287adantr 481 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
289288fveq1d 6827 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
290 oveq1 7344 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
291 fvoveq1 7360 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑘 + 1)))
292290, 291oveq12d 7355 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
293 oveq2 7345 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑦𝑖) = (𝑦𝑘))
294292, 293oveq12d 7355 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
295 eqid 2736 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
296 ovex 7370 . . . . . . . . . . . 12 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
297294, 295, 296fvmpt 6931 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
298297adantl 482 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
299289, 298eqtrd 2776 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
300299sumeq2dv 15514 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
301300mpteq2dva 5192 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
302279, 301breqtrd 5118 . . . . . 6 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
303 nnuz 12722 . . . . . . . 8 ℕ = (ℤ‘1)
304 1e0p1 12580 . . . . . . . . 9 1 = (0 + 1)
305304fveq2i 6828 . . . . . . . 8 (ℤ‘1) = (ℤ‘(0 + 1))
306303, 305eqtri 2764 . . . . . . 7 ℕ = (ℤ‘(0 + 1))
307 1zzd 12452 . . . . . . 7 ((𝜑𝑎𝑆) → 1 ∈ ℤ)
308 0zd 12432 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 0 ∈ ℤ)
309 peano2nn0 12374 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
310309nn0cnd 12396 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℂ)
311310adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℂ)
3127ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
313 ffvelcdm 7015 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ0⟶ℂ ∧ (𝑖 + 1) ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
314312, 309, 313syl2an 596 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
315311, 314mulcld 11096 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) ∈ ℂ)
316280, 148sylan 580 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
317315, 316mulcld 11096 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) ∈ ℂ)
318287, 317fmpt3d 7046 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦):ℕ0⟶ℂ)
319318ffvelcdmda 7017 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑚) ∈ ℂ)
3201, 308, 319serf 13852 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)):ℕ0⟶ℂ)
321320ffvelcdmda 7017 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑗 ∈ ℕ0) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
322321an32s 649 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑦𝐵) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
323322fmpttd 7045 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
32430, 31elmap 8730 . . . . . . . . 9 ((𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
325323, 324sylibr 233 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵))
326325fmpttd 7045 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))):ℕ0⟶(ℂ ↑m 𝐵))
327 elfznn 13386 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ)
328327nnne0d 12124 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → 𝑖 ≠ 0)
329328neneqd 2945 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → ¬ 𝑖 = 0)
330329iffalsed 4484 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑚) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = (𝑖 · (𝑦↑(𝑖 − 1))))
331330oveq2d 7353 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑚) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
332331sumeq2i 15510 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))
333 1zzd 12452 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 1 ∈ ℤ)
334 nnz 12443 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
335334ad2antlr 724 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑚 ∈ ℤ)
336271ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
337327nnnn0d 12394 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ0)
338336, 337, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝐴𝑖) ∈ ℂ)
339327adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ)
340339nncnd 12090 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℂ)
341280adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
342 nnm1nn0 12375 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
343327, 342syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → (𝑖 − 1) ∈ ℕ0)
344 expcl 13901 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑖 − 1) ∈ ℕ0) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
345341, 343, 344syl2an 596 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
346340, 345mulcld 11096 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑖 · (𝑦↑(𝑖 − 1))) ∈ ℂ)
347338, 346mulcld 11096 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ ℂ)
348 fveq2 6825 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝐴𝑖) = (𝐴‘(𝑘 + 1)))
349 id 22 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
350 oveq1 7344 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑘 + 1) → (𝑖 − 1) = ((𝑘 + 1) − 1))
351350oveq2d 7353 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → (𝑦↑(𝑖 − 1)) = (𝑦↑((𝑘 + 1) − 1)))
352349, 351oveq12d 7355 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑖 · (𝑦↑(𝑖 − 1))) = ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
353348, 352oveq12d 7355 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
354333, 333, 335, 347, 353fsumshftm 15592 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
355332, 354eqtrid 2788 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
356 fz1ssfz0 13453 . . . . . . . . . . . . 13 (1...𝑚) ⊆ (0...𝑚)
357356a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (1...𝑚) ⊆ (0...𝑚))
358331adantl 482 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
359358, 347eqeltrd 2837 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
360 eldif 3908 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) ↔ (𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)))
361 elfzuz2 13362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (0...𝑚) → 𝑚 ∈ (ℤ‘0))
362 elfzp12 13436 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (ℤ‘0) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
363361, 362syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝑚) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
364363ibi 266 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0...𝑚) → (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))
365364ord 861 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 = 0 → 𝑖 ∈ ((0 + 1)...𝑚)))
366365con1d 145 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 ∈ ((0 + 1)...𝑚) → 𝑖 = 0))
367366imp 407 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)) → 𝑖 = 0)
368360, 367sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) → 𝑖 = 0)
369304oveq1i 7347 . . . . . . . . . . . . . . . . . 18 (1...𝑚) = ((0 + 1)...𝑚)
370369difeq2i 4066 . . . . . . . . . . . . . . . . 17 ((0...𝑚) ∖ (1...𝑚)) = ((0...𝑚) ∖ ((0 + 1)...𝑚))
371368, 370eleq2s 2855 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 = 0)
372371adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → 𝑖 = 0)
373372iftrued 4481 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = 0)
374373oveq2d 7353 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · 0))
375 eldifi 4073 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ (0...𝑚))
376375, 104syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ ℕ0)
377336, 376, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → (𝐴𝑖) ∈ ℂ)
378377mul01d 11275 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · 0) = 0)
379374, 378eqtrd 2776 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = 0)
380 fzfid 13794 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
381357, 359, 379, 380fsumss 15536 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
382 1m1e0 12146 . . . . . . . . . . . . . 14 (1 − 1) = 0
383382oveq1i 7347 . . . . . . . . . . . . 13 ((1 − 1)...(𝑚 − 1)) = (0...(𝑚 − 1))
384383sumeq1i 15509 . . . . . . . . . . . 12 Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
385 elfznn0 13450 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑚 − 1)) → 𝑘 ∈ ℕ0)
386385adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℕ0)
387386, 297syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
388341adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑦 ∈ ℂ)
389388, 286syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
390389fveq1d 6827 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
391336adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝐴:ℕ0⟶ℂ)
392 peano2nn0 12374 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
393386, 392syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℕ0)
394391, 393ffvelcdmd 7018 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
395393nn0cnd 12396 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℂ)
396 expcl 13901 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
397341, 385, 396syl2an 596 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦𝑘) ∈ ℂ)
398394, 395, 397mul12d 11285 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
399386nn0cnd 12396 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℂ)
400 ax-1cn 11030 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
401 pncan 11328 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
402399, 400, 401sylancl 586 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) − 1) = 𝑘)
403402oveq2d 7353 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) = (𝑦𝑘))
404403oveq2d 7353 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑦𝑘)))
405404oveq2d 7353 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))))
406395, 394, 397mulassd 11099 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
407398, 405, 4063eqtr4d 2786 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
408387, 390, 4073eqtr4d 2786 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
409 nnm1nn0 12375 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
410409adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
411410adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ ℕ0)
412411, 1eleqtrdi 2847 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ (ℤ‘0))
413403, 397eqeltrd 2837 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) ∈ ℂ)
414395, 413mulcld 11096 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) ∈ ℂ)
415394, 414mulcld 11096 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) ∈ ℂ)
416408, 412, 415fsumser 15541 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
417384, 416eqtrid 2788 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
418355, 381, 4173eqtr3d 2784 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
419418mpteq2dva 5192 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
420 fveq2 6825 . . . . . . . . . . . 12 (𝑗 = (𝑚 − 1) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
421420mpteq2dv 5194 . . . . . . . . . . 11 (𝑗 = (𝑚 − 1) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
422 eqid 2736 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))
42331mptex 7155 . . . . . . . . . . 11 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))) ∈ V
424421, 422, 423fvmpt 6931 . . . . . . . . . 10 ((𝑚 − 1) ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
425410, 424syl 17 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
426419, 425eqtr4d 2779 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)))
427426mpteq2dva 5192 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ ↦ ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1))))
4281, 306, 4, 307, 326, 427ulmshft 25655 . . . . . 6 ((𝜑𝑎𝑆) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
429302, 428mpbid 231 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
430177, 429eqbrtrid 5127 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
431 1nn0 12350 . . . . . 6 1 ∈ ℕ0
432431a1i 11 . . . . 5 ((𝜑𝑎𝑆) → 1 ∈ ℕ0)
433 fzfid 13794 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
434164an32s 649 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
435433, 434fsumcl 15544 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
436435fmpttd 7045 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
43730, 31elmap 8730 . . . . . . 7 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
438436, 437sylibr 233 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵))
439438fmpttd 7045 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))):ℕ0⟶(ℂ ↑m 𝐵))
4401, 303, 432, 439ulmres 25653 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
441430, 440mpbird 256 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
442174, 441eqbrtrd 5114 . 2 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
4431, 3, 4, 34, 44, 120, 442ulmdv 25668 1 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3441  cdif 3895  wss 3898  ifcif 4473  {cpr 4575   class class class wbr 5092  cmpt 5175  ccnv 5619  dom cdm 5620  cres 5622  cima 5623  ccom 5624   Fn wfn 6474  wf 6475  cfv 6479  (class class class)co 7337  m cmap 8686  supcsup 9297  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  +∞cpnf 11107  *cxr 11109   < clt 11110  cle 11111  cmin 11306   / cdiv 11733  cn 12074  2c2 12129  0cn0 12334  cz 12420  cuz 12683  +crp 12831  [,)cico 13182  [,]cicc 13183  ...cfz 13340  seqcseq 13822  cexp 13883  abscabs 15044  cli 15292  Σcsu 15496  TopOpenctopn 17229  ∞Metcxmet 20688  ballcbl 20690  fldccnfld 20703  cnccncf 24145   D cdv 25133  𝑢culm 25641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-cmp 22644  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137  df-ulm 25642
This theorem is referenced by:  pserdv  25694
  Copyright terms: Public domain W3C validator