MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem2 Structured version   Visualization version   GIF version

Theorem pserdvlem2 26338
Description: Lemma for pserdv 26339. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
pserdv.b 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
Assertion
Ref Expression
pserdvlem2 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Distinct variable groups:   𝑗,𝑎,𝑘,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑘,𝑦   𝐵,𝑗,𝑘,𝑥,𝑦   𝑗,𝐺,𝑘,𝑟,𝑦   𝑆,𝑎,𝑗,𝑘,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐵(𝑛,𝑟,𝑎)   𝑅(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem2
Dummy variables 𝑚 𝑠 𝑤 𝑧 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12835 . 2 0 = (ℤ‘0)
2 cnelprrecn 11161 . . 3 ℂ ∈ {ℝ, ℂ}
32a1i 11 . 2 ((𝜑𝑎𝑆) → ℂ ∈ {ℝ, ℂ})
4 0zd 12541 . 2 ((𝜑𝑎𝑆) → 0 ∈ ℤ)
5 fzfid 13938 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑘) ∈ Fin)
6 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 pserf.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
87ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
9 pserdv.b . . . . . . . . . . 11 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2))
10 cnxmet 24660 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
11 0cnd 11167 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
12 pserf.f . . . . . . . . . . . . . . 15 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
13 pserf.r . . . . . . . . . . . . . . 15 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.s . . . . . . . . . . . . . . 15 𝑆 = (abs “ (0[,)𝑅))
15 psercn.m . . . . . . . . . . . . . . 15 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
166, 12, 7, 13, 14, 15pserdvlem1 26337 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
1716simp1d 1142 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
1817rpxrd 12996 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
19 blssm 24306 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
2010, 11, 18, 19mp3an2i 1468 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ ℂ)
219, 20eqsstrid 3985 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐵 ⊆ ℂ)
2221adantr 480 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℂ)
2322sselda 3946 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
246, 8, 23psergf 26321 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
25 elfznn0 13581 . . . . . . 7 (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℕ0)
26 ffvelcdm 7053 . . . . . . 7 (((𝐺𝑦):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
2724, 25, 26syl2an 596 . . . . . 6 (((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑘)) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
285, 27fsumcl 15699 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) ∈ ℂ)
2928fmpttd 7087 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
30 cnex 11149 . . . . 5 ℂ ∈ V
319ovexi 7421 . . . . 5 𝐵 ∈ V
3230, 31elmap 8844 . . . 4 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)):𝐵⟶ℂ)
3329, 32sylibr 234 . . 3 (((𝜑𝑎𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) ∈ (ℂ ↑m 𝐵))
3433fmpttd 7087 . 2 ((𝜑𝑎𝑆) → (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))):ℕ0⟶(ℂ ↑m 𝐵))
356, 12, 7, 13, 14, 15psercn 26336 . . . . 5 (𝜑𝐹 ∈ (𝑆cn→ℂ))
36 cncff 24786 . . . . 5 (𝐹 ∈ (𝑆cn→ℂ) → 𝐹:𝑆⟶ℂ)
3735, 36syl 17 . . . 4 (𝜑𝐹:𝑆⟶ℂ)
3837adantr 480 . . 3 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
396, 12, 7, 13, 14, 16psercnlem2 26334 . . . . . 6 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∧ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ∧ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆))
4039simp2d 1143 . . . . 5 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
419, 40eqsstrid 3985 . . . 4 ((𝜑𝑎𝑆) → 𝐵 ⊆ (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))))
4239simp3d 1144 . . . 4 ((𝜑𝑎𝑆) → (abs “ (0[,](((abs‘𝑎) + 𝑀) / 2))) ⊆ 𝑆)
4341, 42sstrd 3957 . . 3 ((𝜑𝑎𝑆) → 𝐵𝑆)
4438, 43fssresd 6727 . 2 ((𝜑𝑎𝑆) → (𝐹𝐵):𝐵⟶ℂ)
45 0zd 12541 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℤ)
46 eqidd 2730 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) = ((𝐺𝑧)‘𝑗))
477ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝐴:ℕ0⟶ℂ)
4821sselda 3946 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ ℂ)
496, 47, 48psergf 26321 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐺𝑧):ℕ0⟶ℂ)
5049ffvelcdmda 7056 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑗 ∈ ℕ0) → ((𝐺𝑧)‘𝑗) ∈ ℂ)
5148abscld 15405 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ)
5251rexrd 11224 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) ∈ ℝ*)
5318adantr 480 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
54 iccssxr 13391 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
556, 7, 13radcnvcl 26326 . . . . . . . . 9 (𝜑𝑅 ∈ (0[,]+∞))
5654, 55sselid 3944 . . . . . . . 8 (𝜑𝑅 ∈ ℝ*)
5756ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑅 ∈ ℝ*)
58 0cn 11166 . . . . . . . . . 10 0 ∈ ℂ
59 eqid 2729 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
6059cnmetdval 24658 . . . . . . . . . 10 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6148, 58, 60sylancl 586 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
6248subid1d 11522 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 − 0) = 𝑧)
6362fveq2d 6862 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
6461, 63eqtrd 2764 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
65 simpr 484 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝐵)
6665, 9eleqtrdi 2838 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)))
6710a1i 11 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
68 0cnd 11167 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 0 ∈ ℂ)
69 elbl3 24280 . . . . . . . . . 10 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7067, 53, 68, 48, 69syl22anc 838 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧 ∈ (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ↔ (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2)))
7166, 70mpbid 232 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑧(abs ∘ − )0) < (((abs‘𝑎) + 𝑀) / 2))
7264, 71eqbrtrrd 5131 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < (((abs‘𝑎) + 𝑀) / 2))
7316simp3d 1144 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7473adantr 480 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
7552, 53, 57, 72, 74xrlttrd 13119 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (abs‘𝑧) < 𝑅)
766, 47, 13, 48, 75radcnvlt2 26328 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ∈ dom ⇝ )
771, 45, 46, 50, 76isumclim2 15724 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
7843sselda 3946 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → 𝑧𝑆)
79 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
8079fveq1d 6860 . . . . . . 7 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑗) = ((𝐺𝑧)‘𝑗))
8180sumeq2sdv 15669 . . . . . 6 (𝑦 = 𝑧 → Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
82 sumex 15654 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗) ∈ V
8381, 12, 82fvmpt 6968 . . . . 5 (𝑧𝑆 → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8478, 83syl 17 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝐹𝑧) = Σ𝑗 ∈ ℕ0 ((𝐺𝑧)‘𝑗))
8577, 84breqtrrd 5135 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → seq0( + , (𝐺𝑧)) ⇝ (𝐹𝑧))
86 oveq2 7395 . . . . . . . . . . 11 (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚))
8786sumeq1d 15666 . . . . . . . . . 10 (𝑘 = 𝑚 → Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
8887mpteq2dv 5201 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
89 eqid 2729 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖))) = (𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))
9031mptex 7197 . . . . . . . . 9 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) ∈ V
9188, 89, 90fvmpt 6968 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9291adantl 481 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
9392fveq1d 6860 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧))
9479fveq1d 6860 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐺𝑦)‘𝑖) = ((𝐺𝑧)‘𝑖))
9594sumeq2sdv 15669 . . . . . . . 8 (𝑦 = 𝑧 → Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
96 eqid 2729 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))
97 sumex 15654 . . . . . . . 8 Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) ∈ V
9895, 96, 97fvmpt 6968 . . . . . . 7 (𝑧𝐵 → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
9998ad2antlr 727 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))‘𝑧) = Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖))
100 eqidd 2730 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) = ((𝐺𝑧)‘𝑖))
101 simpr 484 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
102101, 1eleqtrdi 2838 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
10349adantr 480 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (𝐺𝑧):ℕ0⟶ℂ)
104 elfznn0 13581 . . . . . . . 8 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
105 ffvelcdm 7053 . . . . . . . 8 (((𝐺𝑧):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
106103, 104, 105syl2an 596 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐺𝑧)‘𝑖) ∈ ℂ)
107100, 102, 106fsumser 15696 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → Σ𝑖 ∈ (0...𝑚)((𝐺𝑧)‘𝑖) = (seq0( + , (𝐺𝑧))‘𝑚))
10893, 99, 1073eqtrd 2768 . . . . 5 ((((𝜑𝑎𝑆) ∧ 𝑧𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧) = (seq0( + , (𝐺𝑧))‘𝑚))
109108mpteq2dva 5200 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
110 0z 12540 . . . . . . 7 0 ∈ ℤ
111 seqfn 13978 . . . . . . 7 (0 ∈ ℤ → seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
112110, 111ax-mp 5 . . . . . 6 seq0( + , (𝐺𝑧)) Fn (ℤ‘0)
1131fneq2i 6616 . . . . . 6 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) Fn (ℤ‘0))
114112, 113mpbir 231 . . . . 5 seq0( + , (𝐺𝑧)) Fn ℕ0
115 dffn5 6919 . . . . 5 (seq0( + , (𝐺𝑧)) Fn ℕ0 ↔ seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚)))
116114, 115mpbi 230 . . . 4 seq0( + , (𝐺𝑧)) = (𝑚 ∈ ℕ0 ↦ (seq0( + , (𝐺𝑧))‘𝑚))
117109, 116eqtr4di 2782 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) = seq0( + , (𝐺𝑧)))
118 fvres 6877 . . . 4 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
119118adantl 481 . . 3 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
12085, 117, 1193brtr4d 5139 . 2 (((𝜑𝑎𝑆) ∧ 𝑧𝐵) → (𝑚 ∈ ℕ0 ↦ (((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)‘𝑧)) ⇝ ((𝐹𝐵)‘𝑧))
12191adantl 481 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖)))
122121oveq2d 7403 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))))
123 eqid 2729 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
124123cnfldtopon 24670 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
125124toponrestid 22808 . . . . . 6 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1262a1i 11 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ℂ ∈ {ℝ, ℂ})
127123cnfldtopn 24669 . . . . . . . . . 10 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
128127blopn 24388 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
12910, 11, 18, 128mp3an2i 1468 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ∈ (TopOpen‘ℂfld))
1309, 129eqeltrid 2832 . . . . . . 7 ((𝜑𝑎𝑆) → 𝐵 ∈ (TopOpen‘ℂfld))
131130adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ∈ (TopOpen‘ℂfld))
132 fzfid 13938 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
1337ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
1341333ad2ant1 1133 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
13521adantr 480 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → 𝐵 ⊆ ℂ)
136135sselda 3946 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1371363adant2 1131 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
1386, 134, 137psergf 26321 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → (𝐺𝑦):ℕ0⟶ℂ)
1391043ad2ant2 1134 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
140138, 139ffvelcdmd 7057 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) ∈ ℂ)
1412a1i 11 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → ℂ ∈ {ℝ, ℂ})
142 ffvelcdm 7053 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (𝐴𝑖) ∈ ℂ)
143133, 104, 142syl2an 596 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝐴𝑖) ∈ ℂ)
144143adantr 480 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝐴𝑖) ∈ ℂ)
145136adantlr 715 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
146 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
147104adantl 481 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
148 expcl 14044 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
149146, 147, 148syl2anr 597 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑖) ∈ ℂ)
150145, 149syldan 591 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → (𝑦𝑖) ∈ ℂ)
151144, 150mulcld 11194 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · (𝑦𝑖)) ∈ ℂ)
152 ovexd 7422 . . . . . . . 8 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ V)
153 c0ex 11168 . . . . . . . . . . 11 0 ∈ V
154 ovex 7420 . . . . . . . . . . 11 (𝑖 · (𝑦↑(𝑖 − 1))) ∈ V
155153, 154ifex 4539 . . . . . . . . . 10 if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V
156155a1i 11 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
157155a1i 11 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦 ∈ ℂ) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ V)
158 dvexp2 25858 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
159147, 158syl 17 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑖))) = (𝑦 ∈ ℂ ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
16021ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ⊆ ℂ)
161130ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → 𝐵 ∈ (TopOpen‘ℂfld))
162141, 149, 157, 159, 160, 125, 123, 161dvmptres 25867 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ (𝑦𝑖))) = (𝑦𝐵 ↦ if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
163141, 150, 156, 162, 143dvmptcmul 25868 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
164141, 151, 152, 163dvmptcl 25863 . . . . . . 7 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
1651643impa 1109 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚) ∧ 𝑦𝐵) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
166104ad2antlr 727 . . . . . . . . . 10 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → 𝑖 ∈ ℕ0)
1676pserval2 26320 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
168145, 166, 167syl2anc 584 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) ∧ 𝑦𝐵) → ((𝐺𝑦)‘𝑖) = ((𝐴𝑖) · (𝑦𝑖)))
169168mpteq2dva 5200 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖)) = (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖))))
170169oveq2d 7403 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (ℂ D (𝑦𝐵 ↦ ((𝐴𝑖) · (𝑦𝑖)))))
171170, 163eqtrd 2764 . . . . . 6 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝑚)) → (ℂ D (𝑦𝐵 ↦ ((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
172125, 123, 126, 131, 132, 140, 165, 171dvmptfsum 25879 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐺𝑦)‘𝑖))) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
173122, 172eqtrd 2764 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)) = (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
174173mpteq2dva 5200 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
175 nnssnn0 12445 . . . . . 6 ℕ ⊆ ℕ0
176 resmpt 6008 . . . . . 6 (ℕ ⊆ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))))
177175, 176ax-mp 5 . . . . 5 ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ) = (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))
178 oveq1 7394 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑎𝑖) = (𝑥𝑖))
179178oveq2d 7403 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)))
180179mpteq2dv 5201 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))))
181 oveq1 7394 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1))
182 fvoveq1 7410 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑛 + 1)))
183181, 182oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
184 oveq2 7395 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑥𝑖) = (𝑥𝑛))
185183, 184oveq12d 7405 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
186185cbvmptv 5211 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
187 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
188 fvoveq1 7410 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐴‘(𝑚 + 1)) = (𝐴‘(𝑛 + 1)))
189187, 188oveq12d 7405 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
190 eqid 2729 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))) = (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))
191 ovex 7420 . . . . . . . . . . . . . 14 ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) ∈ V
192189, 190, 191fvmpt 6968 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) = ((𝑛 + 1) · (𝐴‘(𝑛 + 1))))
193192oveq1d 7402 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)) = (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
194193mpteq2ia 5202 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑥𝑛)))
195186, 194eqtr4i 2755 . . . . . . . . . 10 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑥𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛)))
196180, 195eqtrdi 2780 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
197196cbvmptv 5211 . . . . . . . 8 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ (((𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1))))‘𝑛) · (𝑥𝑛))))
198 fveq2 6858 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))
199198fveq1d 6860 . . . . . . . . . 10 (𝑦 = 𝑧 → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
200199sumeq2sdv 15669 . . . . . . . . 9 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
201200cbvmptv 5211 . . . . . . . 8 (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑧𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)‘𝑘))
202 peano2nn0 12482 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
203202adantl 481 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℕ0)
204203nn0cnd 12505 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℂ)
205133, 203ffvelcdmd 7057 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝐴‘(𝑚 + 1)) ∈ ℂ)
206204, 205mulcld 11194 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · (𝐴‘(𝑚 + 1))) ∈ ℂ)
207206fmpttd 7087 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ ((𝑚 + 1) · (𝐴‘(𝑚 + 1)))):ℕ0⟶ℂ)
208 fveq2 6858 . . . . . . . . . . . 12 (𝑟 = 𝑗 → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟) = ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗))
209208seqeq3d 13974 . . . . . . . . . . 11 (𝑟 = 𝑗 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)))
210209eleq1d 2813 . . . . . . . . . 10 (𝑟 = 𝑗 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ ↔ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ ))
211210cbvrabv 3416 . . . . . . . . 9 {𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ } = {𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }
212211supeq1i 9398 . . . . . . . 8 sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑗 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑗)) ∈ dom ⇝ }, ℝ*, < )
213198seqeq3d 13974 . . . . . . . . . . . 12 (𝑦 = 𝑧 → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)) = seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧)))
214213fveq1d 6860 . . . . . . . . . . 11 (𝑦 = 𝑧 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
215214cbvmptv 5211 . . . . . . . . . 10 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗))
216 fveq2 6858 . . . . . . . . . . 11 (𝑗 = 𝑚 → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚))
217216mpteq2dv 5201 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
218215, 217eqtrid 2776 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
219218cbvmptv 5211 . . . . . . . 8 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑚 ∈ ℕ0 ↦ (𝑧𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑧))‘𝑚)))
22017rpred 12995 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
2216, 12, 7, 13, 14, 15psercnlem1 26335 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
222221simp1d 1142 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
223222rpxrd 12996 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
224197, 207, 212radcnvcl 26326 . . . . . . . . . 10 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ (0[,]+∞))
22554, 224sselid 3944 . . . . . . . . 9 ((𝜑𝑎𝑆) → sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
226221simp2d 1143 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
227 cnvimass 6053 . . . . . . . . . . . . . . . 16 (abs “ (0[,)𝑅)) ⊆ dom abs
228 absf 15304 . . . . . . . . . . . . . . . . 17 abs:ℂ⟶ℝ
229228fdmi 6699 . . . . . . . . . . . . . . . 16 dom abs = ℂ
230227, 229sseqtri 3995 . . . . . . . . . . . . . . 15 (abs “ (0[,)𝑅)) ⊆ ℂ
23114, 230eqsstri 3993 . . . . . . . . . . . . . 14 𝑆 ⊆ ℂ
232231a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
233232sselda 3946 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
234233abscld 15405 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
235222rpred 12995 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
236 avglt2 12421 . . . . . . . . . . 11 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
237234, 235, 236syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
238226, 237mpbid 232 . . . . . . . . 9 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
239222rpge0d 12999 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 0 ≤ 𝑀)
240235, 239absidd 15389 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) = 𝑀)
241222rpcnd 12997 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑀 ∈ ℂ)
242 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑀 → (𝑤𝑖) = (𝑀𝑖))
243242oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑀 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
244243mpteq2dv 5201 . . . . . . . . . . . . . . 15 (𝑤 = 𝑀 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
245 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → (𝑎𝑖) = (𝑤𝑖))
246245oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑤 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖)))
247246mpteq2dv 5201 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑤 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
248247cbvmptv 5211 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑤 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑤𝑖))))
249 nn0ex 12448 . . . . . . . . . . . . . . . 16 0 ∈ V
250249mptex 7197 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) ∈ V
251244, 248, 250fvmpt 6968 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
252241, 251syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))))
253252seqeq3d 13974 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) = seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))))
254 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝐴𝑛) = (𝐴𝑖))
255 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑥𝑛) = (𝑥𝑖))
256254, 255oveq12d 7405 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑖) · (𝑥𝑖)))
257256cbvmptv 5211 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖)))
258 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑖) = (𝑦𝑖))
259258oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐴𝑖) · (𝑥𝑖)) = ((𝐴𝑖) · (𝑦𝑖)))
260259mpteq2dv 5201 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑥𝑖))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
261257, 260eqtrid 2776 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) = (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
262261cbvmptv 5211 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))) = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
2636, 262eqtri 2752 . . . . . . . . . . . . 13 𝐺 = (𝑦 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ ((𝐴𝑖) · (𝑦𝑖))))
264 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
265264seqeq3d 13974 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
266265eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
267266cbvrabv 3416 . . . . . . . . . . . . . . 15 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }
268267supeq1i 9398 . . . . . . . . . . . . . 14 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
26913, 268eqtri 2752 . . . . . . . . . . . . 13 𝑅 = sup({𝑠 ∈ ℝ ∣ seq0( + , (𝐺𝑠)) ∈ dom ⇝ }, ℝ*, < )
270 eqid 2729 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))
2717adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
272221simp3d 1144 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
273240, 272eqbrtrd 5129 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑀) < 𝑅)
274263, 269, 270, 271, 241, 273dvradcnv 26330 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → seq0( + , (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑀𝑖)))) ∈ dom ⇝ )
275253, 274eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑀)) ∈ dom ⇝ )
276197, 207, 212, 241, 275radcnvle 26329 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑀) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
277240, 276eqbrtrrd 5131 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
27818, 223, 225, 238, 277xrltletrd 13121 . . . . . . . 8 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ))
279197, 201, 207, 212, 219, 220, 278, 41pserulm 26331 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)))
28021sselda 3946 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
281 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎𝑖) = (𝑦𝑖))
282281oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)) = (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
283282mpteq2dv 5201 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
284 eqid 2729 . . . . . . . . . . . . . 14 (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖)))) = (𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))
285249mptex 7197 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) ∈ V
286283, 284, 285fvmpt 6968 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
287280, 286syl 17 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
288287adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
289288fveq1d 6860 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
290 oveq1 7394 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
291 fvoveq1 7410 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝐴‘(𝑖 + 1)) = (𝐴‘(𝑘 + 1)))
292290, 291oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
293 oveq2 7395 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑦𝑖) = (𝑦𝑘))
294292, 293oveq12d 7405 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
295 eqid 2729 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))
296 ovex 7420 . . . . . . . . . . . 12 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) ∈ V
297294, 295, 296fvmpt 6968 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
298297adantl 481 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
299289, 298eqtrd 2764 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑘 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
300299sumeq2dv 15668 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
301300mpteq2dva 5200 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
302279, 301breqtrd 5133 . . . . . 6 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
303 nnuz 12836 . . . . . . . 8 ℕ = (ℤ‘1)
304 1e0p1 12691 . . . . . . . . 9 1 = (0 + 1)
305304fveq2i 6861 . . . . . . . 8 (ℤ‘1) = (ℤ‘(0 + 1))
306303, 305eqtri 2752 . . . . . . 7 ℕ = (ℤ‘(0 + 1))
307 1zzd 12564 . . . . . . 7 ((𝜑𝑎𝑆) → 1 ∈ ℤ)
308 0zd 12541 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 0 ∈ ℤ)
309 peano2nn0 12482 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
310309nn0cnd 12505 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℂ)
311310adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑖 + 1) ∈ ℂ)
3127ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
313 ffvelcdm 7053 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ0⟶ℂ ∧ (𝑖 + 1) ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
314312, 309, 313syl2an 596 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝐴‘(𝑖 + 1)) ∈ ℂ)
315311, 314mulcld 11194 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1) · (𝐴‘(𝑖 + 1))) ∈ ℂ)
316280, 148sylan 580 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (𝑦𝑖) ∈ ℂ)
317315, 316mulcld 11194 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ℕ0) → (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)) ∈ ℂ)
318287, 317fmpt3d 7088 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦):ℕ0⟶ℂ)
319318ffvelcdmda 7056 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℕ0) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑚) ∈ ℂ)
3201, 308, 319serf 13995 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑦𝐵) → seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)):ℕ0⟶ℂ)
321320ffvelcdmda 7056 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑦𝐵) ∧ 𝑗 ∈ ℕ0) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
322321an32s 652 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑦𝐵) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) ∈ ℂ)
323322fmpttd 7087 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
32430, 31elmap 8844 . . . . . . . . 9 ((𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)):𝐵⟶ℂ)
325323, 324sylibr 234 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑗 ∈ ℕ0) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) ∈ (ℂ ↑m 𝐵))
326325fmpttd 7087 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))):ℕ0⟶(ℂ ↑m 𝐵))
327 elfznn 13514 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ)
328327nnne0d 12236 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → 𝑖 ≠ 0)
329328neneqd 2930 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → ¬ 𝑖 = 0)
330329iffalsed 4499 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑚) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = (𝑖 · (𝑦↑(𝑖 − 1))))
331330oveq2d 7403 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑚) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
332331sumeq2i 15664 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1))))
333 1zzd 12564 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 1 ∈ ℤ)
334 nnz 12550 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
335334ad2antlr 727 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑚 ∈ ℤ)
336271ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝐴:ℕ0⟶ℂ)
337327nnnn0d 12503 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑚) → 𝑖 ∈ ℕ0)
338336, 337, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝐴𝑖) ∈ ℂ)
339327adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℕ)
340339nncnd 12202 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → 𝑖 ∈ ℂ)
341280adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
342 nnm1nn0 12483 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
343327, 342syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑚) → (𝑖 − 1) ∈ ℕ0)
344 expcl 14044 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ (𝑖 − 1) ∈ ℕ0) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
345341, 343, 344syl2an 596 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑦↑(𝑖 − 1)) ∈ ℂ)
346340, 345mulcld 11194 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → (𝑖 · (𝑦↑(𝑖 − 1))) ∈ ℂ)
347338, 346mulcld 11194 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) ∈ ℂ)
348 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝐴𝑖) = (𝐴‘(𝑘 + 1)))
349 id 22 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
350 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑘 + 1) → (𝑖 − 1) = ((𝑘 + 1) − 1))
351350oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑖 = (𝑘 + 1) → (𝑦↑(𝑖 − 1)) = (𝑦↑((𝑘 + 1) − 1)))
352349, 351oveq12d 7405 . . . . . . . . . . . . . 14 (𝑖 = (𝑘 + 1) → (𝑖 · (𝑦↑(𝑖 − 1))) = ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
353348, 352oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = (𝑘 + 1) → ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
354333, 333, 335, 347, 353fsumshftm 15747 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
355332, 354eqtrid 2776 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
356 fz1ssfz0 13584 . . . . . . . . . . . . 13 (1...𝑚) ⊆ (0...𝑚)
357356a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (1...𝑚) ⊆ (0...𝑚))
358331adantl 481 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · (𝑖 · (𝑦↑(𝑖 − 1)))))
359358, 347eqeltrd 2828 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (1...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
360 eldif 3924 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) ↔ (𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)))
361 elfzuz2 13490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (0...𝑚) → 𝑚 ∈ (ℤ‘0))
362 elfzp12 13564 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (ℤ‘0) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
363361, 362syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝑚) → (𝑖 ∈ (0...𝑚) ↔ (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚))))
364363ibi 267 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0...𝑚) → (𝑖 = 0 ∨ 𝑖 ∈ ((0 + 1)...𝑚)))
365364ord 864 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 = 0 → 𝑖 ∈ ((0 + 1)...𝑚)))
366365con1d 145 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0...𝑚) → (¬ 𝑖 ∈ ((0 + 1)...𝑚) → 𝑖 = 0))
367366imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑚) ∧ ¬ 𝑖 ∈ ((0 + 1)...𝑚)) → 𝑖 = 0)
368360, 367sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ((0...𝑚) ∖ ((0 + 1)...𝑚)) → 𝑖 = 0)
369304oveq1i 7397 . . . . . . . . . . . . . . . . . 18 (1...𝑚) = ((0 + 1)...𝑚)
370369difeq2i 4086 . . . . . . . . . . . . . . . . 17 ((0...𝑚) ∖ (1...𝑚)) = ((0...𝑚) ∖ ((0 + 1)...𝑚))
371368, 370eleq2s 2846 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 = 0)
372371adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → 𝑖 = 0)
373372iftrued 4496 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))) = 0)
374373oveq2d 7403 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = ((𝐴𝑖) · 0))
375 eldifi 4094 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ (0...𝑚))
376375, 104syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ ((0...𝑚) ∖ (1...𝑚)) → 𝑖 ∈ ℕ0)
377336, 376, 142syl2an 596 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → (𝐴𝑖) ∈ ℂ)
378377mul01d 11373 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · 0) = 0)
379374, 378eqtrd 2764 . . . . . . . . . . . 12 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑖 ∈ ((0...𝑚) ∖ (1...𝑚))) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = 0)
380 fzfid 13938 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
381357, 359, 379, 380fsumss 15691 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (1...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))
382 1m1e0 12258 . . . . . . . . . . . . . 14 (1 − 1) = 0
383382oveq1i 7397 . . . . . . . . . . . . 13 ((1 − 1)...(𝑚 − 1)) = (0...(𝑚 − 1))
384383sumeq1i 15663 . . . . . . . . . . . 12 Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))))
385 elfznn0 13581 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑚 − 1)) → 𝑘 ∈ ℕ0)
386385adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℕ0)
387386, 297syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
388341adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑦 ∈ ℂ)
389388, 286syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦) = (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖))))
390389fveq1d 6860 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑦𝑖)))‘𝑘))
391336adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝐴:ℕ0⟶ℂ)
392 peano2nn0 12482 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
393386, 392syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℕ0)
394391, 393ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
395393nn0cnd 12505 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑘 + 1) ∈ ℂ)
396 expcl 14044 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
397341, 385, 396syl2an 596 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦𝑘) ∈ ℂ)
398394, 395, 397mul12d 11383 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
399386nn0cnd 12505 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → 𝑘 ∈ ℂ)
400 ax-1cn 11126 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
401 pncan 11427 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
402399, 400, 401sylancl 586 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) − 1) = 𝑘)
403402oveq2d 7403 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) = (𝑦𝑘))
404403oveq2d 7403 . . . . . . . . . . . . . . . 16 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑦𝑘)))
405404oveq2d 7403 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦𝑘))))
406395, 394, 397mulassd 11197 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑦𝑘))))
407398, 405, 4063eqtr4d 2774 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))
408387, 390, 4073eqtr4d 2774 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦)‘𝑘) = ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))))
409 nnm1nn0 12483 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
410409adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
411410adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ ℕ0)
412411, 1eleqtrdi 2838 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → (𝑚 − 1) ∈ (ℤ‘0))
413403, 397eqeltrd 2828 . . . . . . . . . . . . . . 15 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → (𝑦↑((𝑘 + 1) − 1)) ∈ ℂ)
414395, 413mulcld 11194 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1))) ∈ ℂ)
415394, 414mulcld 11194 . . . . . . . . . . . . 13 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) ∧ 𝑘 ∈ (0...(𝑚 − 1))) → ((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) ∈ ℂ)
416408, 412, 415fsumser 15696 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ (0...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
417384, 416eqtrid 2776 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑘 ∈ ((1 − 1)...(𝑚 − 1))((𝐴‘(𝑘 + 1)) · ((𝑘 + 1) · (𝑦↑((𝑘 + 1) − 1)))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
418355, 381, 4173eqtr3d 2772 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
419418mpteq2dva 5200 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
420 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = (𝑚 − 1) → (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗) = (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1)))
421420mpteq2dv 5201 . . . . . . . . . . 11 (𝑗 = (𝑚 − 1) → (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
422 eqid 2729 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗))) = (𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))
42331mptex 7197 . . . . . . . . . . 11 (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))) ∈ V
424421, 422, 423fvmpt 6968 . . . . . . . . . 10 ((𝑚 − 1) ∈ ℕ0 → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
425410, 424syl 17 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)) = (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘(𝑚 − 1))))
426419, 425eqtr4d 2767 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) = ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1)))
427426mpteq2dva 5200 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) = (𝑚 ∈ ℕ ↦ ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))‘(𝑚 − 1))))
4281, 306, 4, 307, 326, 427ulmshft 26299 . . . . . 6 ((𝜑𝑎𝑆) → ((𝑗 ∈ ℕ0 ↦ (𝑦𝐵 ↦ (seq0( + , ((𝑎 ∈ ℂ ↦ (𝑖 ∈ ℕ0 ↦ (((𝑖 + 1) · (𝐴‘(𝑖 + 1))) · (𝑎𝑖))))‘𝑦))‘𝑗)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
429302, 428mpbid 232 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
430177, 429eqbrtrid 5142 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
431 1nn0 12458 . . . . . 6 1 ∈ ℕ0
432431a1i 11 . . . . 5 ((𝜑𝑎𝑆) → 1 ∈ ℕ0)
433 fzfid 13938 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → (0...𝑚) ∈ Fin)
434164an32s 652 . . . . . . . . 9 (((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
435433, 434fsumcl 15699 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) ∧ 𝑦𝐵) → Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))) ∈ ℂ)
436435fmpttd 7087 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
43730, 31elmap 8844 . . . . . . 7 ((𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵) ↔ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))):𝐵⟶ℂ)
438436, 437sylibr 234 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑚 ∈ ℕ0) → (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))) ∈ (ℂ ↑m 𝐵))
439438fmpttd 7087 . . . . 5 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))):ℕ0⟶(ℂ ↑m 𝐵))
4401, 303, 432, 439ulmres 26297 . . . 4 ((𝜑𝑎𝑆) → ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))) ↔ ((𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1))))))) ↾ ℕ)(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘)))))
441430, 440mpbird 257 . . 3 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑚)((𝐴𝑖) · if(𝑖 = 0, 0, (𝑖 · (𝑦↑(𝑖 − 1)))))))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
442174, 441eqbrtrd 5129 . 2 ((𝜑𝑎𝑆) → (𝑚 ∈ ℕ0 ↦ (ℂ D ((𝑘 ∈ ℕ0 ↦ (𝑦𝐵 ↦ Σ𝑖 ∈ (0...𝑘)((𝐺𝑦)‘𝑖)))‘𝑚)))(⇝𝑢𝐵)(𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
4431, 3, 4, 34, 44, 120, 442ulmdv 26312 1 ((𝜑𝑎𝑆) → (ℂ D (𝐹𝐵)) = (𝑦𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  {cpr 4591   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  [,)cico 13308  [,]cicc 13309  ...cfz 13468  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450  Σcsu 15652  TopOpenctopn 17384  ∞Metcxmet 21249  ballcbl 21251  fldccnfld 21264  cnccncf 24769   D cdv 25764  𝑢culm 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286
This theorem is referenced by:  pserdv  26339
  Copyright terms: Public domain W3C validator