Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexpnat Structured version   Visualization version   GIF version

Theorem breprexpnat 34618
Description: Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexp.z (𝜑𝑍 ∈ ℂ)
breprexpnat.a (𝜑𝐴 ⊆ ℕ)
breprexpnat.p 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
breprexpnat.r 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
Assertion
Ref Expression
breprexpnat (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Distinct variable groups:   𝑚,𝑁   𝑆,𝑚   𝑚,𝑍   𝐴,𝑏,𝑚   𝑁,𝑏   𝑆,𝑏   𝑍,𝑏   𝜑,𝑏,𝑚
Allowed substitution hints:   𝑃(𝑚,𝑏)   𝑅(𝑚,𝑏)

Proof of Theorem breprexpnat
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breprexp.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2 breprexp.s . . . 4 (𝜑𝑆 ∈ ℕ0)
3 breprexp.z . . . 4 (𝜑𝑍 ∈ ℂ)
4 fvex 6835 . . . . . 6 ((𝟭‘ℕ)‘𝐴) ∈ V
54fconst 6710 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)}
6 nnex 12134 . . . . . . . . 9 ℕ ∈ V
7 breprexpnat.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 indf 32807 . . . . . . . . 9 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
96, 7, 8sylancr 587 . . . . . . . 8 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
10 0cn 11107 . . . . . . . . 9 0 ∈ ℂ
11 ax-1cn 11067 . . . . . . . . 9 1 ∈ ℂ
12 prssi 4772 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1310, 11, 12mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℂ
14 fss 6668 . . . . . . . 8 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
159, 13, 14sylancl 586 . . . . . . 7 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
16 cnex 11090 . . . . . . . 8 ℂ ∈ V
1716, 6elmap 8798 . . . . . . 7 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1815, 17sylibr 234 . . . . . 6 (𝜑 → ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ))
194snss 4736 . . . . . 6 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ))
2018, 19sylib 218 . . . . 5 (𝜑 → {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ))
21 fss 6668 . . . . 5 ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)} ∧ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ)) → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
225, 20, 21sylancr 587 . . . 4 (𝜑 → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
231, 2, 3, 22breprexp 34617 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
244fvconst2 7140 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2524ad2antlr 727 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2625fveq1d 6824 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) = (((𝟭‘ℕ)‘𝐴)‘𝑏))
2726oveq1d 7364 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
2827sumeq2dv 15609 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
296a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ℕ ∈ V)
30 fzfi 13879 . . . . . . . 8 (1...𝑁) ∈ Fin
3130a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ∈ Fin)
32 fz1ssnn 13458 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3332a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ⊆ ℕ)
347adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
353ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑍 ∈ ℂ)
36 nnssnn0 12387 . . . . . . . . . 10 ℕ ⊆ ℕ0
3732, 36sstri 3945 . . . . . . . . 9 (1...𝑁) ⊆ ℕ0
38 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
3937, 38sselid 3933 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℕ0)
4035, 39expcld 14053 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑍𝑏) ∈ ℂ)
4129, 31, 33, 34, 40indsumin 32814 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏))
42 incom 4160 . . . . . . . 8 ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁))
4342a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁)))
4443sumeq1d 15607 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4528, 41, 443eqtrd 2768 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4645prodeq2dv 15829 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
47 fzofi 13881 . . . . . 6 (0..^𝑆) ∈ Fin
4847a1i 11 . . . . 5 (𝜑 → (0..^𝑆) ∈ Fin)
49 inss2 4189 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)
50 ssfi 9087 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)) → (𝐴 ∩ (1...𝑁)) ∈ Fin)
5130, 49, 50mp2an 692 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ Fin
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 ∩ (1...𝑁)) ∈ Fin)
533adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑍 ∈ ℂ)
5449, 37sstri 3945 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ ℕ0
55 simpr 484 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ (𝐴 ∩ (1...𝑁)))
5654, 55sselid 3933 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ ℕ0)
5753, 56expcld 14053 . . . . . 6 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → (𝑍𝑏) ∈ ℂ)
5852, 57fsumcl 15640 . . . . 5 (𝜑 → Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ)
59 fprodconst 15885 . . . . 5 (((0..^𝑆) ∈ Fin ∧ Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))))
6048, 58, 59syl2anc 584 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))))
61 hashfzo0 14337 . . . . . 6 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
622, 61syl 17 . . . . 5 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
6362oveq2d 7365 . . . 4 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6446, 60, 633eqtrd 2768 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6532a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
66 fzssz 13429 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℤ
67 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
6866, 67sselid 3933 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
692adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
7030a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
7165, 68, 69, 70reprfi 34600 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
723adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑍 ∈ ℂ)
73 fz0ssnn0 13525 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℕ0
7473, 67sselid 3933 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℕ0)
7572, 74expcld 14053 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑍𝑚) ∈ ℂ)
7647a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
779ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
7832a1i 11 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
7968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
8069adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
81 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
8278, 79, 80, 81reprf 34596 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
8382ffvelcdmda 7018 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
8432, 83sselid 3933 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
8577, 84ffvelcdmd 7019 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ {0, 1})
8613, 85sselid 3933 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8776, 86fprodcl 15859 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8871, 75, 87fsummulc1 15692 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
897adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝐴 ⊆ ℕ)
9089, 68, 69, 70, 65hashreprin 34604 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9190oveq1d 7364 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9224fveq1d 6824 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9392adantl 481 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9493prodeq2dv 15829 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9594adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9695oveq1d 7364 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9796sumeq2dv 15609 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9888, 91, 973eqtr4rd 2775 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
9998sumeq2dv 15609 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
10023, 64, 993eqtr3d 2772 . 2 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
101 breprexpnat.p . . 3 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
102101oveq1i 7359 . 2 (𝑃𝑆) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆)
103 breprexpnat.r . . . . 5 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
104103oveq1i 7359 . . . 4 (𝑅 · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
105104a1i 11 . . 3 (𝑚 ∈ (0...(𝑆 · 𝑁)) → (𝑅 · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
106105sumeq2i 15605 . 2 Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
107100, 102, 1063eqtr4g 2789 1 (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  {csn 4577  {cpr 4579   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  Fincfn 8872  cc 11007  0cc0 11009  1c1 11010   · cmul 11014  cn 12128  0cn0 12384  cz 12471  ...cfz 13410  ..^cfzo 13557  cexp 13968  chash 14237  Σcsu 15593  cprod 15810  𝟭cind 32802  reprcrepr 34592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-ind 32803  df-repr 34593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator