Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexpnat Structured version   Visualization version   GIF version

Theorem breprexpnat 34625
Description: Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexp.z (𝜑𝑍 ∈ ℂ)
breprexpnat.a (𝜑𝐴 ⊆ ℕ)
breprexpnat.p 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
breprexpnat.r 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
Assertion
Ref Expression
breprexpnat (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Distinct variable groups:   𝑚,𝑁   𝑆,𝑚   𝑚,𝑍   𝐴,𝑏,𝑚   𝑁,𝑏   𝑆,𝑏   𝑍,𝑏   𝜑,𝑏,𝑚
Allowed substitution hints:   𝑃(𝑚,𝑏)   𝑅(𝑚,𝑏)

Proof of Theorem breprexpnat
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breprexp.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2 breprexp.s . . . 4 (𝜑𝑆 ∈ ℕ0)
3 breprexp.z . . . 4 (𝜑𝑍 ∈ ℂ)
4 fvex 6871 . . . . . 6 ((𝟭‘ℕ)‘𝐴) ∈ V
54fconst 6746 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)}
6 nnex 12192 . . . . . . . . 9 ℕ ∈ V
7 breprexpnat.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 indf 32778 . . . . . . . . 9 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
96, 7, 8sylancr 587 . . . . . . . 8 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
10 0cn 11166 . . . . . . . . 9 0 ∈ ℂ
11 ax-1cn 11126 . . . . . . . . 9 1 ∈ ℂ
12 prssi 4785 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1310, 11, 12mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℂ
14 fss 6704 . . . . . . . 8 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
159, 13, 14sylancl 586 . . . . . . 7 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
16 cnex 11149 . . . . . . . 8 ℂ ∈ V
1716, 6elmap 8844 . . . . . . 7 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1815, 17sylibr 234 . . . . . 6 (𝜑 → ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ))
194snss 4749 . . . . . 6 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑m ℕ) ↔ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ))
2018, 19sylib 218 . . . . 5 (𝜑 → {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ))
21 fss 6704 . . . . 5 ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)} ∧ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑m ℕ)) → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
225, 20, 21sylancr 587 . . . 4 (𝜑 → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑m ℕ))
231, 2, 3, 22breprexp 34624 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
244fvconst2 7178 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2524ad2antlr 727 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2625fveq1d 6860 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) = (((𝟭‘ℕ)‘𝐴)‘𝑏))
2726oveq1d 7402 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
2827sumeq2dv 15668 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
296a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ℕ ∈ V)
30 fzfi 13937 . . . . . . . 8 (1...𝑁) ∈ Fin
3130a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ∈ Fin)
32 fz1ssnn 13516 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3332a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ⊆ ℕ)
347adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
353ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑍 ∈ ℂ)
36 nnssnn0 12445 . . . . . . . . . 10 ℕ ⊆ ℕ0
3732, 36sstri 3956 . . . . . . . . 9 (1...𝑁) ⊆ ℕ0
38 simpr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
3937, 38sselid 3944 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℕ0)
4035, 39expcld 14111 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑍𝑏) ∈ ℂ)
4129, 31, 33, 34, 40indsumin 32785 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏))
42 incom 4172 . . . . . . . 8 ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁))
4342a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁)))
4443sumeq1d 15666 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4528, 41, 443eqtrd 2768 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4645prodeq2dv 15888 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
47 fzofi 13939 . . . . . 6 (0..^𝑆) ∈ Fin
4847a1i 11 . . . . 5 (𝜑 → (0..^𝑆) ∈ Fin)
49 inss2 4201 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)
50 ssfi 9137 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)) → (𝐴 ∩ (1...𝑁)) ∈ Fin)
5130, 49, 50mp2an 692 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ Fin
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 ∩ (1...𝑁)) ∈ Fin)
533adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑍 ∈ ℂ)
5449, 37sstri 3956 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ ℕ0
55 simpr 484 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ (𝐴 ∩ (1...𝑁)))
5654, 55sselid 3944 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ ℕ0)
5753, 56expcld 14111 . . . . . 6 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → (𝑍𝑏) ∈ ℂ)
5852, 57fsumcl 15699 . . . . 5 (𝜑 → Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ)
59 fprodconst 15944 . . . . 5 (((0..^𝑆) ∈ Fin ∧ Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))))
6048, 58, 59syl2anc 584 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))))
61 hashfzo0 14395 . . . . . 6 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
622, 61syl 17 . . . . 5 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
6362oveq2d 7403 . . . 4 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(♯‘(0..^𝑆))) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6446, 60, 633eqtrd 2768 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6532a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
66 fzssz 13487 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℤ
67 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
6866, 67sselid 3944 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
692adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
7030a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
7165, 68, 69, 70reprfi 34607 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
723adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑍 ∈ ℂ)
73 fz0ssnn0 13583 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℕ0
7473, 67sselid 3944 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℕ0)
7572, 74expcld 14111 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑍𝑚) ∈ ℂ)
7647a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
779ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
7832a1i 11 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
7968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
8069adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
81 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
8278, 79, 80, 81reprf 34603 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
8382ffvelcdmda 7056 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
8432, 83sselid 3944 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
8577, 84ffvelcdmd 7057 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ {0, 1})
8613, 85sselid 3944 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8776, 86fprodcl 15918 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8871, 75, 87fsummulc1 15751 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
897adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝐴 ⊆ ℕ)
9089, 68, 69, 70, 65hashreprin 34611 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9190oveq1d 7402 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9224fveq1d 6860 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9392adantl 481 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9493prodeq2dv 15888 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9594adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9695oveq1d 7402 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9796sumeq2dv 15668 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9888, 91, 973eqtr4rd 2775 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
9998sumeq2dv 15668 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
10023, 64, 993eqtr3d 2772 . 2 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
101 breprexpnat.p . . 3 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
102101oveq1i 7397 . 2 (𝑃𝑆) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆)
103 breprexpnat.r . . . . 5 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
104103oveq1i 7397 . . . 4 (𝑅 · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
105104a1i 11 . . 3 (𝑚 ∈ (0...(𝑆 · 𝑁)) → (𝑅 · (𝑍𝑚)) = ((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
106105sumeq2i 15664 . 2 Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
107100, 102, 1063eqtr4g 2789 1 (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  {csn 4589  {cpr 4591   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  ..^cfzo 13615  cexp 14026  chash 14295  Σcsu 15652  cprod 15869  𝟭cind 32773  reprcrepr 34599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-prod 15870  df-ind 32774  df-repr 34600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator