Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem18 Structured version   Visualization version   GIF version

Theorem knoppndvlem18 33861
Description: Lemma for knoppndv 33866. (Contributed by Asger C. Ipsen, 14-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem18.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem18.n (𝜑𝑁 ∈ ℕ)
knoppndvlem18.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem18.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem18.g (𝜑𝐺 ∈ ℝ+)
knoppndvlem18.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem18 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Distinct variable groups:   𝐶,𝑗   𝐷,𝑗   𝑗,𝐸   𝑗,𝐺   𝑗,𝑁   𝜑,𝑗

Proof of Theorem knoppndvlem18
StepHypRef Expression
1 2re 11703 . . . . . . . . . . . 12 2 ∈ ℝ
21a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem18.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
43nnred 11645 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
52, 4remulcld 10663 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
65adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ)
76recnd 10661 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
8 2pos 11732 . . . . . . . . . . . 12 0 < 2
98a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
103nngt0d 11678 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
112, 4, 9, 10mulgt0d 10787 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1211gt0ne0d 11196 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
1312adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ≠ 0)
14 nnz 11996 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1514adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
167, 13, 15expnegd 13509 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
1716adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
18 2rp 12386 . . . . . . . . . . 11 2 ∈ ℝ+
1918a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
20 knoppndvlem18.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2119, 20jca 514 . . . . . . . . 9 (𝜑 → (2 ∈ ℝ+𝐷 ∈ ℝ+))
22 rpmulcl 12404 . . . . . . . . 9 ((2 ∈ ℝ+𝐷 ∈ ℝ+) → (2 · 𝐷) ∈ ℝ+)
2321, 22syl 17 . . . . . . . 8 (𝜑 → (2 · 𝐷) ∈ ℝ+)
2423adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (2 · 𝐷) ∈ ℝ+)
255, 11elrpd 12420 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2625adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ+)
2726, 15rpexpcld 13600 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2827adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2924rprecred 12434 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ∈ ℝ)
30 knoppndvlem18.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (-1(,)1))
3130knoppndvlem3 33846 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
3231simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
3332recnd 10661 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
3433abscld 14788 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℝ)
355, 34remulcld 10663 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 nnnn0 11896 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
3936, 38reexpcld 13519 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4039adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4128rpred 12423 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
42 knoppndvlem18.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
4342rpred 12423 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
44 knoppndvlem18.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ℝ+)
4544rpred 12423 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝ)
4644rpne0d 12428 . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0)
4743, 45, 46redivcld 11460 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝐺) ∈ ℝ)
4823rprecred 12434 . . . . . . . . . . 11 (𝜑 → (1 / (2 · 𝐷)) ∈ ℝ)
4947, 48ifcld 4510 . . . . . . . . . 10 (𝜑 → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5049adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5148, 47jca 514 . . . . . . . . . . 11 (𝜑 → ((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ))
52 max1 12570 . . . . . . . . . . 11 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5453adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
55 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5629, 50, 40, 54, 55lelttrd 10790 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5734recnd 10661 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℂ)
5857adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℂ)
597, 58, 38mulexpd 13517 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) = (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)))
6034adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℝ)
6160, 38reexpcld 13519 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ∈ ℝ)
62 1red 10634 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℝ)
6327rpred 12423 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
6427rpge0d 12427 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 0 ≤ ((2 · 𝑁)↑𝑗))
6533absge0d 14796 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝐶))
66 1red 10634 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6731simprd 498 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐶) < 1)
6834, 66, 67ltled 10780 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐶) ≤ 1)
6934, 65, 683jca 1123 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7069adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7170, 38jca 514 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0))
72 exple1 13532 . . . . . . . . . . . . 13 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0) → ((abs‘𝐶)↑𝑗) ≤ 1)
7371, 72syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ≤ 1)
7461, 62, 63, 64, 73lemul2ad 11572 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ (((2 · 𝑁)↑𝑗) · 1))
7563recnd 10661 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℂ)
7675mulid1d 10650 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · 1) = ((2 · 𝑁)↑𝑗))
7774, 76breqtrd 5083 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ ((2 · 𝑁)↑𝑗))
7859, 77eqbrtrd 5079 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
7978adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
8029, 40, 41, 56, 79ltletrd 10792 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < ((2 · 𝑁)↑𝑗))
8124, 28, 80ltrec1d 12443 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / ((2 · 𝑁)↑𝑗)) < (2 · 𝐷))
8217, 81eqbrtrd 5079 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) < (2 · 𝐷))
83 nnnegz 11976 . . . . . . . . 9 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8483adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → -𝑗 ∈ ℤ)
856, 13, 84reexpclzd 13602 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) ∈ ℝ)
8620rpred 12423 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
8786adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐷 ∈ ℝ)
8818a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
8985, 87, 88ltdivmuld 12474 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9089adantrr 715 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9182, 90mpbird 259 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
9247adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ∈ ℝ)
93 max2 12572 . . . . . . . 8 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9451, 93syl 17 . . . . . . 7 (𝜑 → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9594adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9650, 40, 55ltled 10780 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9792, 50, 40, 95, 96letrd 10789 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9843adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ∈ ℝ)
9944adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐺 ∈ ℝ+)
10098, 40, 99ledivmul2d 12477 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ↔ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
10197, 100mpbid 234 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))
10291, 101jca 514 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
103 1t1e1 11791 . . . . . . . . 9 (1 · 1) = 1
104103eqcomi 2828 . . . . . . . 8 1 = (1 · 1)
105104a1i 11 . . . . . . 7 (𝜑 → 1 = (1 · 1))
1064, 34remulcld 10663 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
107 0le1 11155 . . . . . . . . 9 0 ≤ 1
108107a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
109 1lt2 11800 . . . . . . . . 9 1 < 2
110109a1i 11 . . . . . . . 8 (𝜑 → 1 < 2)
111 knoppndvlem18.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
11266, 2, 66, 106, 108, 110, 108, 111ltmul12ad 11573 . . . . . . 7 (𝜑 → (1 · 1) < (2 · (𝑁 · (abs‘𝐶))))
113105, 112eqbrtrd 5079 . . . . . 6 (𝜑 → 1 < (2 · (𝑁 · (abs‘𝐶))))
1142recnd 10661 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
1154recnd 10661 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
116114, 115, 57mulassd 10656 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
117116eqcomd 2825 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
118113, 117breqtrd 5083 . . . . 5 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
11949, 35, 1183jca 1123 . . . 4 (𝜑 → (if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
120 expnbnd 13585 . . . 4 ((if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
121119, 120syl 17 . . 3 (𝜑 → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
122102, 121reximddv 3273 . 2 (𝜑 → ∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
123 nnssnn0 11892 . . 3 ℕ ⊆ ℕ0
124 ssrexv 4032 . . 3 (ℕ ⊆ ℕ0 → (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))))
125123, 124ax-mp 5 . 2 (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
126122, 125syl 17 1 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wrex 3137  wss 3934  ifcif 4465   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534   < clt 10667  cle 10668  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  +crp 12381  (,)cioo 12730  cexp 13421  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-fl 13154  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  knoppndvlem22  33865
  Copyright terms: Public domain W3C validator