Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem18 Structured version   Visualization version   GIF version

Theorem knoppndvlem18 33868
Description: Lemma for knoppndv 33873. (Contributed by Asger C. Ipsen, 14-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem18.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem18.n (𝜑𝑁 ∈ ℕ)
knoppndvlem18.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem18.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem18.g (𝜑𝐺 ∈ ℝ+)
knoppndvlem18.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem18 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Distinct variable groups:   𝐶,𝑗   𝐷,𝑗   𝑗,𝐸   𝑗,𝐺   𝑗,𝑁   𝜑,𝑗

Proof of Theorem knoppndvlem18
StepHypRef Expression
1 2re 11712 . . . . . . . . . . . 12 2 ∈ ℝ
21a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem18.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
43nnred 11653 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
52, 4remulcld 10671 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
65adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ)
76recnd 10669 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
8 2pos 11741 . . . . . . . . . . . 12 0 < 2
98a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
103nngt0d 11687 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
112, 4, 9, 10mulgt0d 10795 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1211gt0ne0d 11204 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
1312adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ≠ 0)
14 nnz 12005 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1514adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
167, 13, 15expnegd 13518 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
1716adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
18 2rp 12395 . . . . . . . . . . 11 2 ∈ ℝ+
1918a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
20 knoppndvlem18.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2119, 20jca 514 . . . . . . . . 9 (𝜑 → (2 ∈ ℝ+𝐷 ∈ ℝ+))
22 rpmulcl 12413 . . . . . . . . 9 ((2 ∈ ℝ+𝐷 ∈ ℝ+) → (2 · 𝐷) ∈ ℝ+)
2321, 22syl 17 . . . . . . . 8 (𝜑 → (2 · 𝐷) ∈ ℝ+)
2423adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (2 · 𝐷) ∈ ℝ+)
255, 11elrpd 12429 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2625adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ+)
2726, 15rpexpcld 13609 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2827adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2924rprecred 12443 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ∈ ℝ)
30 knoppndvlem18.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (-1(,)1))
3130knoppndvlem3 33853 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
3231simpld 497 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
3332recnd 10669 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
3433abscld 14796 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℝ)
355, 34remulcld 10671 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 nnnn0 11905 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
3936, 38reexpcld 13528 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4039adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4128rpred 12432 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
42 knoppndvlem18.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
4342rpred 12432 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
44 knoppndvlem18.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ℝ+)
4544rpred 12432 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝ)
4644rpne0d 12437 . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0)
4743, 45, 46redivcld 11468 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝐺) ∈ ℝ)
4823rprecred 12443 . . . . . . . . . . 11 (𝜑 → (1 / (2 · 𝐷)) ∈ ℝ)
4947, 48ifcld 4512 . . . . . . . . . 10 (𝜑 → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5049adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5148, 47jca 514 . . . . . . . . . . 11 (𝜑 → ((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ))
52 max1 12579 . . . . . . . . . . 11 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5453adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
55 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5629, 50, 40, 54, 55lelttrd 10798 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5734recnd 10669 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℂ)
5857adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℂ)
597, 58, 38mulexpd 13526 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) = (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)))
6034adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℝ)
6160, 38reexpcld 13528 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ∈ ℝ)
62 1red 10642 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℝ)
6327rpred 12432 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
6427rpge0d 12436 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 0 ≤ ((2 · 𝑁)↑𝑗))
6533absge0d 14804 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝐶))
66 1red 10642 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6731simprd 498 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐶) < 1)
6834, 66, 67ltled 10788 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐶) ≤ 1)
6934, 65, 683jca 1124 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7069adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7170, 38jca 514 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0))
72 exple1 13541 . . . . . . . . . . . . 13 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0) → ((abs‘𝐶)↑𝑗) ≤ 1)
7371, 72syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ≤ 1)
7461, 62, 63, 64, 73lemul2ad 11580 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ (((2 · 𝑁)↑𝑗) · 1))
7563recnd 10669 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℂ)
7675mulid1d 10658 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · 1) = ((2 · 𝑁)↑𝑗))
7774, 76breqtrd 5092 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ ((2 · 𝑁)↑𝑗))
7859, 77eqbrtrd 5088 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
7978adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
8029, 40, 41, 56, 79ltletrd 10800 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < ((2 · 𝑁)↑𝑗))
8124, 28, 80ltrec1d 12452 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / ((2 · 𝑁)↑𝑗)) < (2 · 𝐷))
8217, 81eqbrtrd 5088 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) < (2 · 𝐷))
83 nnnegz 11985 . . . . . . . . 9 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8483adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → -𝑗 ∈ ℤ)
856, 13, 84reexpclzd 13611 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) ∈ ℝ)
8620rpred 12432 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
8786adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐷 ∈ ℝ)
8818a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
8985, 87, 88ltdivmuld 12483 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9089adantrr 715 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9182, 90mpbird 259 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
9247adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ∈ ℝ)
93 max2 12581 . . . . . . . 8 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9451, 93syl 17 . . . . . . 7 (𝜑 → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9594adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9650, 40, 55ltled 10788 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9792, 50, 40, 95, 96letrd 10797 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9843adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ∈ ℝ)
9944adantr 483 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐺 ∈ ℝ+)
10098, 40, 99ledivmul2d 12486 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ↔ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
10197, 100mpbid 234 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))
10291, 101jca 514 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
103 1t1e1 11800 . . . . . . . . 9 (1 · 1) = 1
104103eqcomi 2830 . . . . . . . 8 1 = (1 · 1)
105104a1i 11 . . . . . . 7 (𝜑 → 1 = (1 · 1))
1064, 34remulcld 10671 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
107 0le1 11163 . . . . . . . . 9 0 ≤ 1
108107a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
109 1lt2 11809 . . . . . . . . 9 1 < 2
110109a1i 11 . . . . . . . 8 (𝜑 → 1 < 2)
111 knoppndvlem18.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
11266, 2, 66, 106, 108, 110, 108, 111ltmul12ad 11581 . . . . . . 7 (𝜑 → (1 · 1) < (2 · (𝑁 · (abs‘𝐶))))
113105, 112eqbrtrd 5088 . . . . . 6 (𝜑 → 1 < (2 · (𝑁 · (abs‘𝐶))))
1142recnd 10669 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
1154recnd 10669 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
116114, 115, 57mulassd 10664 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
117116eqcomd 2827 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
118113, 117breqtrd 5092 . . . . 5 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
11949, 35, 1183jca 1124 . . . 4 (𝜑 → (if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
120 expnbnd 13594 . . . 4 ((if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
121119, 120syl 17 . . 3 (𝜑 → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
122102, 121reximddv 3275 . 2 (𝜑 → ∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
123 nnssnn0 11901 . . 3 ℕ ⊆ ℕ0
124 ssrexv 4034 . . 3 (ℕ ⊆ ℕ0 → (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))))
125123, 124ax-mp 5 . 2 (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
126122, 125syl 17 1 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936  ifcif 4467   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675  cle 10676  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  +crp 12390  (,)cioo 12739  cexp 13430  abscabs 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ioo 12743  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by:  knoppndvlem22  33872
  Copyright terms: Public domain W3C validator