Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem18 Structured version   Visualization version   GIF version

Theorem knoppndvlem18 36552
Description: Lemma for knoppndv 36557. (Contributed by Asger C. Ipsen, 14-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem18.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem18.n (𝜑𝑁 ∈ ℕ)
knoppndvlem18.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem18.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem18.g (𝜑𝐺 ∈ ℝ+)
knoppndvlem18.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem18 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Distinct variable groups:   𝐶,𝑗   𝐷,𝑗   𝑗,𝐸   𝑗,𝐺   𝑗,𝑁   𝜑,𝑗

Proof of Theorem knoppndvlem18
StepHypRef Expression
1 2re 12319 . . . . . . . . . . . 12 2 ∈ ℝ
21a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem18.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
43nnred 12260 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
52, 4remulcld 11270 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
65adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ)
76recnd 11268 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
8 2pos 12348 . . . . . . . . . . . 12 0 < 2
98a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
103nngt0d 12294 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
112, 4, 9, 10mulgt0d 11395 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1211gt0ne0d 11806 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
1312adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ≠ 0)
14 nnz 12614 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
167, 13, 15expnegd 14176 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
1716adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
18 2rp 13018 . . . . . . . . . . 11 2 ∈ ℝ+
1918a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
20 knoppndvlem18.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 (𝜑 → (2 ∈ ℝ+𝐷 ∈ ℝ+))
22 rpmulcl 13037 . . . . . . . . 9 ((2 ∈ ℝ+𝐷 ∈ ℝ+) → (2 · 𝐷) ∈ ℝ+)
2321, 22syl 17 . . . . . . . 8 (𝜑 → (2 · 𝐷) ∈ ℝ+)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (2 · 𝐷) ∈ ℝ+)
255, 11elrpd 13053 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2625adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ+)
2726, 15rpexpcld 14270 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2827adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2924rprecred 13067 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ∈ ℝ)
30 knoppndvlem18.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (-1(,)1))
3130knoppndvlem3 36537 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
3231simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
3332recnd 11268 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
3433abscld 15460 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℝ)
355, 34remulcld 11270 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 nnnn0 12513 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
3936, 38reexpcld 14186 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4039adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4128rpred 13056 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
42 knoppndvlem18.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
4342rpred 13056 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
44 knoppndvlem18.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ℝ+)
4544rpred 13056 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝ)
4644rpne0d 13061 . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0)
4743, 45, 46redivcld 12074 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝐺) ∈ ℝ)
4823rprecred 13067 . . . . . . . . . . 11 (𝜑 → (1 / (2 · 𝐷)) ∈ ℝ)
4947, 48ifcld 4552 . . . . . . . . . 10 (𝜑 → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5049adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5148, 47jca 511 . . . . . . . . . . 11 (𝜑 → ((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ))
52 max1 13206 . . . . . . . . . . 11 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
55 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5629, 50, 40, 54, 55lelttrd 11398 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5734recnd 11268 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℂ)
5857adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℂ)
597, 58, 38mulexpd 14184 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) = (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)))
6034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℝ)
6160, 38reexpcld 14186 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ∈ ℝ)
62 1red 11241 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℝ)
6327rpred 13056 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
6427rpge0d 13060 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 0 ≤ ((2 · 𝑁)↑𝑗))
6533absge0d 15468 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝐶))
66 1red 11241 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6731simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐶) < 1)
6834, 66, 67ltled 11388 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐶) ≤ 1)
6934, 65, 683jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7069adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7170, 38jca 511 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0))
72 exple1 14200 . . . . . . . . . . . . 13 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0) → ((abs‘𝐶)↑𝑗) ≤ 1)
7371, 72syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ≤ 1)
7461, 62, 63, 64, 73lemul2ad 12187 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ (((2 · 𝑁)↑𝑗) · 1))
7563recnd 11268 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℂ)
7675mulridd 11257 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · 1) = ((2 · 𝑁)↑𝑗))
7774, 76breqtrd 5150 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ ((2 · 𝑁)↑𝑗))
7859, 77eqbrtrd 5146 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
7978adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
8029, 40, 41, 56, 79ltletrd 11400 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < ((2 · 𝑁)↑𝑗))
8124, 28, 80ltrec1d 13076 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / ((2 · 𝑁)↑𝑗)) < (2 · 𝐷))
8217, 81eqbrtrd 5146 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) < (2 · 𝐷))
83 nnnegz 12596 . . . . . . . . 9 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8483adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → -𝑗 ∈ ℤ)
856, 13, 84reexpclzd 14272 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) ∈ ℝ)
8620rpred 13056 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
8786adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐷 ∈ ℝ)
8818a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
8985, 87, 88ltdivmuld 13107 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9089adantrr 717 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9182, 90mpbird 257 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
9247adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ∈ ℝ)
93 max2 13208 . . . . . . . 8 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9451, 93syl 17 . . . . . . 7 (𝜑 → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9594adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9650, 40, 55ltled 11388 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9792, 50, 40, 95, 96letrd 11397 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9843adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ∈ ℝ)
9944adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐺 ∈ ℝ+)
10098, 40, 99ledivmul2d 13110 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ↔ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
10197, 100mpbid 232 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))
10291, 101jca 511 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
103 1t1e1 12407 . . . . . . . . 9 (1 · 1) = 1
104103eqcomi 2745 . . . . . . . 8 1 = (1 · 1)
105104a1i 11 . . . . . . 7 (𝜑 → 1 = (1 · 1))
1064, 34remulcld 11270 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
107 0le1 11765 . . . . . . . . 9 0 ≤ 1
108107a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
109 1lt2 12416 . . . . . . . . 9 1 < 2
110109a1i 11 . . . . . . . 8 (𝜑 → 1 < 2)
111 knoppndvlem18.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
11266, 2, 66, 106, 108, 110, 108, 111ltmul12ad 12188 . . . . . . 7 (𝜑 → (1 · 1) < (2 · (𝑁 · (abs‘𝐶))))
113105, 112eqbrtrd 5146 . . . . . 6 (𝜑 → 1 < (2 · (𝑁 · (abs‘𝐶))))
1142recnd 11268 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
1154recnd 11268 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
116114, 115, 57mulassd 11263 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
117116eqcomd 2742 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
118113, 117breqtrd 5150 . . . . 5 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
11949, 35, 1183jca 1128 . . . 4 (𝜑 → (if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
120 expnbnd 14255 . . . 4 ((if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
121119, 120syl 17 . . 3 (𝜑 → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
122102, 121reximddv 3157 . 2 (𝜑 → ∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
123 nnssnn0 12509 . . 3 ℕ ⊆ ℕ0
124 ssrexv 4033 . . 3 (ℕ ⊆ ℕ0 → (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))))
125123, 124ax-mp 5 . 2 (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
126122, 125syl 17 1 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  wss 3931  ifcif 4505   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  +crp 13013  (,)cioo 13367  cexp 14084  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ioo 13371  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  knoppndvlem22  36556
  Copyright terms: Public domain W3C validator