Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem18 Structured version   Visualization version   GIF version

Theorem knoppndvlem18 34992
Description: Lemma for knoppndv 34997. (Contributed by Asger C. Ipsen, 14-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem18.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem18.n (𝜑𝑁 ∈ ℕ)
knoppndvlem18.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem18.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem18.g (𝜑𝐺 ∈ ℝ+)
knoppndvlem18.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem18 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Distinct variable groups:   𝐶,𝑗   𝐷,𝑗   𝑗,𝐸   𝑗,𝐺   𝑗,𝑁   𝜑,𝑗

Proof of Theorem knoppndvlem18
StepHypRef Expression
1 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
21a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem18.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
43nnred 12168 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
52, 4remulcld 11185 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
65adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ)
76recnd 11183 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
8 2pos 12256 . . . . . . . . . . . 12 0 < 2
98a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
103nngt0d 12202 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
112, 4, 9, 10mulgt0d 11310 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1211gt0ne0d 11719 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
1312adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ≠ 0)
14 nnz 12520 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1514adantl 482 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
167, 13, 15expnegd 14058 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
1716adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
18 2rp 12920 . . . . . . . . . . 11 2 ∈ ℝ+
1918a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
20 knoppndvlem18.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2119, 20jca 512 . . . . . . . . 9 (𝜑 → (2 ∈ ℝ+𝐷 ∈ ℝ+))
22 rpmulcl 12938 . . . . . . . . 9 ((2 ∈ ℝ+𝐷 ∈ ℝ+) → (2 · 𝐷) ∈ ℝ+)
2321, 22syl 17 . . . . . . . 8 (𝜑 → (2 · 𝐷) ∈ ℝ+)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (2 · 𝐷) ∈ ℝ+)
255, 11elrpd 12954 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2625adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ+)
2726, 15rpexpcld 14150 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2827adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2924rprecred 12968 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ∈ ℝ)
30 knoppndvlem18.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (-1(,)1))
3130knoppndvlem3 34977 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
3231simpld 495 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
3332recnd 11183 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
3433abscld 15321 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℝ)
355, 34remulcld 11185 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 nnnn0 12420 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
3936, 38reexpcld 14068 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4039adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4128rpred 12957 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
42 knoppndvlem18.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
4342rpred 12957 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
44 knoppndvlem18.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ℝ+)
4544rpred 12957 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝ)
4644rpne0d 12962 . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0)
4743, 45, 46redivcld 11983 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝐺) ∈ ℝ)
4823rprecred 12968 . . . . . . . . . . 11 (𝜑 → (1 / (2 · 𝐷)) ∈ ℝ)
4947, 48ifcld 4532 . . . . . . . . . 10 (𝜑 → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5049adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5148, 47jca 512 . . . . . . . . . . 11 (𝜑 → ((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ))
52 max1 13104 . . . . . . . . . . 11 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5453adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
55 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5629, 50, 40, 54, 55lelttrd 11313 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5734recnd 11183 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℂ)
5857adantr 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℂ)
597, 58, 38mulexpd 14066 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) = (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)))
6034adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℝ)
6160, 38reexpcld 14068 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ∈ ℝ)
62 1red 11156 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℝ)
6327rpred 12957 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
6427rpge0d 12961 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 0 ≤ ((2 · 𝑁)↑𝑗))
6533absge0d 15329 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝐶))
66 1red 11156 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6731simprd 496 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐶) < 1)
6834, 66, 67ltled 11303 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐶) ≤ 1)
6934, 65, 683jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7069adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7170, 38jca 512 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0))
72 exple1 14081 . . . . . . . . . . . . 13 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0) → ((abs‘𝐶)↑𝑗) ≤ 1)
7371, 72syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ≤ 1)
7461, 62, 63, 64, 73lemul2ad 12095 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ (((2 · 𝑁)↑𝑗) · 1))
7563recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℂ)
7675mulid1d 11172 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · 1) = ((2 · 𝑁)↑𝑗))
7774, 76breqtrd 5131 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ ((2 · 𝑁)↑𝑗))
7859, 77eqbrtrd 5127 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
7978adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
8029, 40, 41, 56, 79ltletrd 11315 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < ((2 · 𝑁)↑𝑗))
8124, 28, 80ltrec1d 12977 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / ((2 · 𝑁)↑𝑗)) < (2 · 𝐷))
8217, 81eqbrtrd 5127 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) < (2 · 𝐷))
83 nnnegz 12502 . . . . . . . . 9 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8483adantl 482 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → -𝑗 ∈ ℤ)
856, 13, 84reexpclzd 14152 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) ∈ ℝ)
8620rpred 12957 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
8786adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐷 ∈ ℝ)
8818a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
8985, 87, 88ltdivmuld 13008 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9089adantrr 715 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9182, 90mpbird 256 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
9247adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ∈ ℝ)
93 max2 13106 . . . . . . . 8 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9451, 93syl 17 . . . . . . 7 (𝜑 → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9594adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9650, 40, 55ltled 11303 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9792, 50, 40, 95, 96letrd 11312 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9843adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ∈ ℝ)
9944adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐺 ∈ ℝ+)
10098, 40, 99ledivmul2d 13011 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ↔ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
10197, 100mpbid 231 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))
10291, 101jca 512 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
103 1t1e1 12315 . . . . . . . . 9 (1 · 1) = 1
104103eqcomi 2745 . . . . . . . 8 1 = (1 · 1)
105104a1i 11 . . . . . . 7 (𝜑 → 1 = (1 · 1))
1064, 34remulcld 11185 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
107 0le1 11678 . . . . . . . . 9 0 ≤ 1
108107a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
109 1lt2 12324 . . . . . . . . 9 1 < 2
110109a1i 11 . . . . . . . 8 (𝜑 → 1 < 2)
111 knoppndvlem18.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
11266, 2, 66, 106, 108, 110, 108, 111ltmul12ad 12096 . . . . . . 7 (𝜑 → (1 · 1) < (2 · (𝑁 · (abs‘𝐶))))
113105, 112eqbrtrd 5127 . . . . . 6 (𝜑 → 1 < (2 · (𝑁 · (abs‘𝐶))))
1142recnd 11183 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
1154recnd 11183 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
116114, 115, 57mulassd 11178 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
117116eqcomd 2742 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
118113, 117breqtrd 5131 . . . . 5 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
11949, 35, 1183jca 1128 . . . 4 (𝜑 → (if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
120 expnbnd 14135 . . . 4 ((if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
121119, 120syl 17 . . 3 (𝜑 → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
122102, 121reximddv 3168 . 2 (𝜑 → ∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
123 nnssnn0 12416 . . 3 ℕ ⊆ ℕ0
124 ssrexv 4011 . . 3 (ℕ ⊆ ℕ0 → (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))))
125123, 124ax-mp 5 . 2 (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
126122, 125syl 17 1 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  +crp 12915  (,)cioo 13264  cexp 13967  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ioo 13268  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  knoppndvlem22  34996
  Copyright terms: Public domain W3C validator