Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem18 Structured version   Visualization version   GIF version

Theorem knoppndvlem18 36571
Description: Lemma for knoppndv 36576. (Contributed by Asger C. Ipsen, 14-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem18.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem18.n (𝜑𝑁 ∈ ℕ)
knoppndvlem18.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem18.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem18.g (𝜑𝐺 ∈ ℝ+)
knoppndvlem18.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem18 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Distinct variable groups:   𝐶,𝑗   𝐷,𝑗   𝑗,𝐸   𝑗,𝐺   𝑗,𝑁   𝜑,𝑗

Proof of Theorem knoppndvlem18
StepHypRef Expression
1 2re 12199 . . . . . . . . . . . 12 2 ∈ ℝ
21a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3 knoppndvlem18.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
43nnred 12140 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
52, 4remulcld 11142 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
65adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ)
76recnd 11140 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
8 2pos 12228 . . . . . . . . . . . 12 0 < 2
98a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
103nngt0d 12174 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
112, 4, 9, 10mulgt0d 11268 . . . . . . . . . 10 (𝜑 → 0 < (2 · 𝑁))
1211gt0ne0d 11681 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ≠ 0)
1312adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ≠ 0)
14 nnz 12489 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
167, 13, 15expnegd 14060 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
1716adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) = (1 / ((2 · 𝑁)↑𝑗)))
18 2rp 12895 . . . . . . . . . . 11 2 ∈ ℝ+
1918a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
20 knoppndvlem18.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 (𝜑 → (2 ∈ ℝ+𝐷 ∈ ℝ+))
22 rpmulcl 12915 . . . . . . . . 9 ((2 ∈ ℝ+𝐷 ∈ ℝ+) → (2 · 𝐷) ∈ ℝ+)
2321, 22syl 17 . . . . . . . 8 (𝜑 → (2 · 𝐷) ∈ ℝ+)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (2 · 𝐷) ∈ ℝ+)
255, 11elrpd 12931 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ+)
2625adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℝ+)
2726, 15rpexpcld 14154 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2827adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ+)
2924rprecred 12945 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ∈ ℝ)
30 knoppndvlem18.c . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (-1(,)1))
3130knoppndvlem3 36556 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
3231simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
3332recnd 11140 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
3433abscld 15346 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℝ)
355, 34remulcld 11142 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 nnnn0 12388 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
3936, 38reexpcld 14070 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4039adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ∈ ℝ)
4128rpred 12934 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
42 knoppndvlem18.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
4342rpred 12934 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
44 knoppndvlem18.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ℝ+)
4544rpred 12934 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℝ)
4644rpne0d 12939 . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0)
4743, 45, 46redivcld 11949 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝐺) ∈ ℝ)
4823rprecred 12945 . . . . . . . . . . 11 (𝜑 → (1 / (2 · 𝐷)) ∈ ℝ)
4947, 48ifcld 4519 . . . . . . . . . 10 (𝜑 → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5049adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ)
5148, 47jca 511 . . . . . . . . . . 11 (𝜑 → ((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ))
52 max1 13084 . . . . . . . . . . 11 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
55 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5629, 50, 40, 54, 55lelttrd 11271 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
5734recnd 11140 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐶) ∈ ℂ)
5857adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℂ)
597, 58, 38mulexpd 14068 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) = (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)))
6034adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (abs‘𝐶) ∈ ℝ)
6160, 38reexpcld 14070 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ∈ ℝ)
62 1red 11113 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℝ)
6327rpred 12934 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℝ)
6427rpge0d 12938 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 0 ≤ ((2 · 𝑁)↑𝑗))
6533absge0d 15354 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝐶))
66 1red 11113 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6731simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐶) < 1)
6834, 66, 67ltled 11261 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐶) ≤ 1)
6934, 65, 683jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7069adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1))
7170, 38jca 511 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0))
72 exple1 14084 . . . . . . . . . . . . 13 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶) ∧ (abs‘𝐶) ≤ 1) ∧ 𝑗 ∈ ℕ0) → ((abs‘𝐶)↑𝑗) ≤ 1)
7371, 72syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((abs‘𝐶)↑𝑗) ≤ 1)
7461, 62, 63, 64, 73lemul2ad 12062 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ (((2 · 𝑁)↑𝑗) · 1))
7563recnd 11140 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑𝑗) ∈ ℂ)
7675mulridd 11129 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · 1) = ((2 · 𝑁)↑𝑗))
7774, 76breqtrd 5115 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁)↑𝑗) · ((abs‘𝐶)↑𝑗)) ≤ ((2 · 𝑁)↑𝑗))
7859, 77eqbrtrd 5111 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
7978adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ≤ ((2 · 𝑁)↑𝑗))
8029, 40, 41, 56, 79ltletrd 11273 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / (2 · 𝐷)) < ((2 · 𝑁)↑𝑗))
8124, 28, 80ltrec1d 12954 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (1 / ((2 · 𝑁)↑𝑗)) < (2 · 𝐷))
8217, 81eqbrtrd 5111 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((2 · 𝑁)↑-𝑗) < (2 · 𝐷))
83 nnnegz 12471 . . . . . . . . 9 (𝑗 ∈ ℕ → -𝑗 ∈ ℤ)
8483adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → -𝑗 ∈ ℤ)
856, 13, 84reexpclzd 14156 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((2 · 𝑁)↑-𝑗) ∈ ℝ)
8620rpred 12934 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
8786adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐷 ∈ ℝ)
8818a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
8985, 87, 88ltdivmuld 12985 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9089adantrr 717 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ↔ ((2 · 𝑁)↑-𝑗) < (2 · 𝐷)))
9182, 90mpbird 257 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
9247adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ∈ ℝ)
93 max2 13086 . . . . . . . 8 (((1 / (2 · 𝐷)) ∈ ℝ ∧ (𝐸 / 𝐺) ∈ ℝ) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9451, 93syl 17 . . . . . . 7 (𝜑 → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9594adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))))
9650, 40, 55ltled 11261 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9792, 50, 40, 95, 96letrd 11270 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → (𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
9843adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ∈ ℝ)
9944adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐺 ∈ ℝ+)
10098, 40, 99ledivmul2d 12988 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((𝐸 / 𝐺) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝑗) ↔ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
10197, 100mpbid 232 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))
10291, 101jca 511 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))) → ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
103 1t1e1 12282 . . . . . . . . 9 (1 · 1) = 1
104103eqcomi 2740 . . . . . . . 8 1 = (1 · 1)
105104a1i 11 . . . . . . 7 (𝜑 → 1 = (1 · 1))
1064, 34remulcld 11142 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
107 0le1 11640 . . . . . . . . 9 0 ≤ 1
108107a1i 11 . . . . . . . 8 (𝜑 → 0 ≤ 1)
109 1lt2 12291 . . . . . . . . 9 1 < 2
110109a1i 11 . . . . . . . 8 (𝜑 → 1 < 2)
111 knoppndvlem18.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
11266, 2, 66, 106, 108, 110, 108, 111ltmul12ad 12063 . . . . . . 7 (𝜑 → (1 · 1) < (2 · (𝑁 · (abs‘𝐶))))
113105, 112eqbrtrd 5111 . . . . . 6 (𝜑 → 1 < (2 · (𝑁 · (abs‘𝐶))))
1142recnd 11140 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
1154recnd 11140 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
116114, 115, 57mulassd 11135 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
117116eqcomd 2737 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
118113, 117breqtrd 5115 . . . . 5 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
11949, 35, 1183jca 1128 . . . 4 (𝜑 → (if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
120 expnbnd 14139 . . . 4 ((if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) ∈ ℝ ∧ ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
121119, 120syl 17 . . 3 (𝜑 → ∃𝑗 ∈ ℕ if((1 / (2 · 𝐷)) ≤ (𝐸 / 𝐺), (𝐸 / 𝐺), (1 / (2 · 𝐷))) < (((2 · 𝑁) · (abs‘𝐶))↑𝑗))
122102, 121reximddv 3148 . 2 (𝜑 → ∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
123 nnssnn0 12384 . . 3 ℕ ⊆ ℕ0
124 ssrexv 3999 . . 3 (ℕ ⊆ ℕ0 → (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))))
125123, 124ax-mp 5 . 2 (∃𝑗 ∈ ℕ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)) → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
126122, 125syl 17 1 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  wss 3897  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  +crp 12890  (,)cioo 13245  cexp 13968  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ioo 13249  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  knoppndvlem22  36575
  Copyright terms: Public domain W3C validator