Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 43119
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . 7 (𝜑𝐽𝑈)
3 eqid 2736 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 21178 . . . . . . 7 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3963 . . . . 5 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2736 . . . . . 6 (deg1𝑅) = (deg1𝑅)
9 hbtlem.p . . . . . 6 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 26045 . . . . 5 (𝑎 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . 4 ((𝜑𝑎𝐽) → ((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 4133 . . . . 5 (((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ (((deg1𝑅)‘𝑎) ∈ ℕ0 ∨ ((deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 12509 . . . . . . 7 ℕ ⊆ ℕ0
14 nn0re 12515 . . . . . . . 8 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ((deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 12503 . . . . . . . 8 (((deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . 7 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 4033 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 68 . . . . . 6 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4623 . . . . . . 7 (((deg1𝑅)‘𝑎) ∈ {-∞} → ((deg1𝑅)‘𝑎) = -∞)
20 0nn0 12521 . . . . . . . . 9 0 ∈ ℕ0
21 mnflt0 13146 . . . . . . . . 9 -∞ < 0
22 breq2 5128 . . . . . . . . . 10 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3606 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 692 . . . . . . . 8 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 5127 . . . . . . . . 9 (((deg1𝑅)‘𝑎) = -∞ → (((deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3165 . . . . . . . 8 (((deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 258 . . . . . . 7 (((deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . 6 (((deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 857 . . . . 5 ((((deg1𝑅)‘𝑎) ∈ ℕ0 ∨ ((deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 217 . . . 4 (((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . 3 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
32 breq2 5128 . . . . . . . . . . 11 (𝑐 = 0 → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < 0))
3332imbi1d 341 . . . . . . . . . 10 (𝑐 = 0 → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 3164 . . . . . . . . 9 (𝑐 = 0 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 340 . . . . . . . 8 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 5128 . . . . . . . . . . 11 (𝑐 = 𝑏 → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 341 . . . . . . . . . 10 (𝑐 = 𝑏 → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 3164 . . . . . . . . 9 (𝑐 = 𝑏 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 340 . . . . . . . 8 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 5128 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 341 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 3164 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6881 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → ((deg1𝑅)‘𝑎) = ((deg1𝑅)‘𝑑))
4443breq1d 5134 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (((deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2823 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 344 . . . . . . . . . . 11 (𝑎 = 𝑑 → ((((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralvw 3224 . . . . . . . . . 10 (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47bitrdi 287 . . . . . . . . 9 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 340 . . . . . . . 8 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
5150adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2736 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 26053 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → (((deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (((deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 22188 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . 13 (𝜑𝐼𝑈)
584, 52lidl0cl 21186 . . . . . . . . . . . . 13 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2830 . . . . . . . . . . . 12 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 240 . . . . . . . . 9 ((𝜑𝑎𝐽) → (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3963 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 26045 . . . . . . . . . . . . . 14 (𝑑 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 12619 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 26035 . . . . . . . . . . . . 13 ((((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 584 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 3997 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3604 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . 20 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 43114 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 43114 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 4018 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 480 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2737 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((deg1𝑅)‘𝑒) = ((deg1𝑅)‘𝑑))
9594breq1d 5134 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((deg1𝑅)‘𝑒) ≤ 𝑏 ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6883 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2747 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → ((((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ (((deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3606 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (((deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 836 . . . . . . . . . . . . . . . . 17 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6894 . . . . . . . . . . . . . . . . . 18 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ((coe1𝑑)‘𝑏) → ((((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3165 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3663 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 481 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3964 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3165 . . . . . . . . . . . . . . . 16 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3663 . . . . . . . . . . . . . . 15 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1214 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 20203 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3964 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 21178 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3964 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
125 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 19020 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1213 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑑) = (coe1𝑑)
135 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑒) = (coe1𝑒)
136 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 26072 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3964 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 21190 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1215 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → ((deg1𝑅)‘𝑎) = ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 5134 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (((deg1𝑅)‘𝑎) < 𝑏 ↔ ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑑(-g𝑃)𝑒) → ((((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3604 . . . . . . . . . . . . . . . . . . . 20 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 21187 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 838 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2836 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3143 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155biimtrid 242 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 456 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 240 . . . . . . . . . . 11 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 3133 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1119 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 12693 . . . . . . 7 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 3234 . . . . . . 7 (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 37 . . . . . 6 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 86 . . . . 5 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 406 . . . 4 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3140 . . 3 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . 2 ((𝜑𝑎𝐽) → 𝑎𝐼)
1701, 169eqelssd 3985 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  cun 3929  wss 3931  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  -∞cmnf 11272   < clt 11274  cle 11275  cn 12245  0cn0 12506  cz 12593  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  Ringcrg 20198  LIdealclidl 21172  Poly1cpl1 22117  coe1cco1 22118  deg1cdg1 26016  ldgIdlSeqcldgis 43112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-cnfld 21321  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018  df-ldgis 43113
This theorem is referenced by:  hbt  43121
  Copyright terms: Public domain W3C validator