Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 41441
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . 7 (𝜑𝐽𝑈)
3 eqid 2736 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 20680 . . . . . . 7 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3944 . . . . 5 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2736 . . . . . 6 ( deg1𝑅) = ( deg1𝑅)
9 hbtlem.p . . . . . 6 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 25448 . . . . 5 (𝑎 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . 4 ((𝜑𝑎𝐽) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 4108 . . . . 5 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 12416 . . . . . . 7 ℕ ⊆ ℕ0
14 nn0re 12422 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → (( deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 12410 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 4011 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 68 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4603 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ {-∞} → (( deg1𝑅)‘𝑎) = -∞)
20 0nn0 12428 . . . . . . . . 9 0 ∈ ℕ0
21 mnflt0 13046 . . . . . . . . 9 -∞ < 0
22 breq2 5109 . . . . . . . . . 10 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3581 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 690 . . . . . . . 8 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 5108 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) = -∞ → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3175 . . . . . . . 8 ((( deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 257 . . . . . . 7 ((( deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 855 . . . . 5 (((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 216 . . . 4 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . 3 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
32 breq2 5109 . . . . . . . . . . 11 (𝑐 = 0 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 0))
3332imbi1d 341 . . . . . . . . . 10 (𝑐 = 0 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 3174 . . . . . . . . 9 (𝑐 = 0 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 340 . . . . . . . 8 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 5109 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 341 . . . . . . . . . 10 (𝑐 = 𝑏 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 3174 . . . . . . . . 9 (𝑐 = 𝑏 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 340 . . . . . . . 8 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 5109 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 341 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 3174 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6842 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘𝑑))
4443breq1d 5115 . . . . . . . . . . . 12 (𝑎 = 𝑑 → ((( deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2825 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 344 . . . . . . . . . . 11 (𝑎 = 𝑑 → (((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralvw 3225 . . . . . . . . . 10 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47bitrdi 286 . . . . . . . . 9 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 340 . . . . . . . 8 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
5150adantr 481 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2736 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 25456 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 21619 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . 13 (𝜑𝐼𝑈)
584, 52lidl0cl 20682 . . . . . . . . . . . . 13 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2833 . . . . . . . . . . . 12 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 239 . . . . . . . . 9 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3944 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 25448 . . . . . . . . . . . . . 14 (𝑑 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1191 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 12525 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 25438 . . . . . . . . . . . . 13 (((( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 584 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 3977 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3579 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . 20 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 41436 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 41436 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 3990 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 481 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2737 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → (( deg1𝑅)‘𝑒) = (( deg1𝑅)‘𝑑))
9594breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → ((( deg1𝑅)‘𝑒) ≤ 𝑏 ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2747 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3581 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 835 . . . . . . . . . . . . . . . . 17 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6855 . . . . . . . . . . . . . . . . . 18 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ((coe1𝑑)‘𝑏) → (((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3630 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 482 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3945 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3175 . . . . . . . . . . . . . . . 16 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3630 . . . . . . . . . . . . . . 15 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1213 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 19969 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 775 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3945 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 20680 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3945 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
125 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 18839 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1212 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 776 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 779 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑑) = (coe1𝑑)
135 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑒) = (coe1𝑒)
136 simprrr 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 25475 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3945 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 20686 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 837 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1214 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 5115 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑑(-g𝑃)𝑒) → (((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3579 . . . . . . . . . . . . . . . . . . . 20 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 20683 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 837 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2839 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3153 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155biimtrid 241 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 457 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 239 . . . . . . . . . . 11 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 3143 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1119 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 12598 . . . . . . 7 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 3230 . . . . . . 7 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 37 . . . . . 6 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 86 . . . . 5 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 407 . . . 4 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3150 . . 3 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . 2 ((𝜑𝑎𝐽) → 𝑎𝐼)
1701, 169eqelssd 3965 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  cun 3908  wss 3910  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  -∞cmnf 11187   < clt 11189  cle 11190  cn 12153  0cn0 12413  cz 12499  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Grpcgrp 18748  -gcsg 18750  Ringcrg 19964  LIdealclidl 20631  Poly1cpl1 21548  coe1cco1 21549   deg1 cdg1 25416  ldgIdlSeqcldgis 41434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rlreg 20753  df-cnfld 20797  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-coe1 21554  df-mdeg 25417  df-deg1 25418  df-ldgis 41435
This theorem is referenced by:  hbt  41443
  Copyright terms: Public domain W3C validator