Step | Hyp | Ref
| Expression |
1 | | hbtlem3.ij |
. 2
⊢ (𝜑 → 𝐼 ⊆ 𝐽) |
2 | | hbtlem3.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ 𝑈) |
3 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
4 | | hbtlem.u |
. . . . . . . 8
⊢ 𝑈 = (LIdeal‘𝑃) |
5 | 3, 4 | lidlss 20394 |
. . . . . . 7
⊢ (𝐽 ∈ 𝑈 → 𝐽 ⊆ (Base‘𝑃)) |
6 | 2, 5 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑃)) |
7 | 6 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → 𝑎 ∈ (Base‘𝑃)) |
8 | | eqid 2738 |
. . . . . 6
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
9 | | hbtlem.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
10 | 8, 9, 3 | deg1cl 25153 |
. . . . 5
⊢ (𝑎 ∈ (Base‘𝑃) → (( deg1
‘𝑅)‘𝑎) ∈ (ℕ0
∪ {-∞})) |
11 | 7, 10 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → (( deg1 ‘𝑅)‘𝑎) ∈ (ℕ0 ∪
{-∞})) |
12 | | elun 4079 |
. . . . 5
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ (ℕ0 ∪
{-∞}) ↔ ((( deg1 ‘𝑅)‘𝑎) ∈ ℕ0 ∨ ((
deg1 ‘𝑅)‘𝑎) ∈ {-∞})) |
13 | | nnssnn0 12166 |
. . . . . . 7
⊢ ℕ
⊆ ℕ0 |
14 | | nn0re 12172 |
. . . . . . . 8
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ ℕ0 → ((
deg1 ‘𝑅)‘𝑎) ∈ ℝ) |
15 | | arch 12160 |
. . . . . . . 8
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ ℕ0 →
∃𝑏 ∈ ℕ ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
17 | | ssrexv 3984 |
. . . . . . 7
⊢ (ℕ
⊆ ℕ0 → (∃𝑏 ∈ ℕ (( deg1
‘𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏)) |
18 | 13, 16, 17 | mpsyl 68 |
. . . . . 6
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ ℕ0 →
∃𝑏 ∈
ℕ0 (( deg1 ‘𝑅)‘𝑎) < 𝑏) |
19 | | elsni 4575 |
. . . . . . 7
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ {-∞} → (( deg1
‘𝑅)‘𝑎) = -∞) |
20 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
21 | | mnflt0 12790 |
. . . . . . . . 9
⊢ -∞
< 0 |
22 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ <
0)) |
23 | 22 | rspcev 3552 |
. . . . . . . . 9
⊢ ((0
∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0
-∞ < 𝑏) |
24 | 20, 21, 23 | mp2an 688 |
. . . . . . . 8
⊢
∃𝑏 ∈
ℕ0 -∞ < 𝑏 |
25 | | breq1 5073 |
. . . . . . . . 9
⊢ (((
deg1 ‘𝑅)‘𝑎) = -∞ → ((( deg1
‘𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏)) |
26 | 25 | rexbidv 3225 |
. . . . . . . 8
⊢ (((
deg1 ‘𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ <
𝑏)) |
27 | 24, 26 | mpbiri 257 |
. . . . . . 7
⊢ (((
deg1 ‘𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
28 | 19, 27 | syl 17 |
. . . . . 6
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
29 | 18, 28 | jaoi 853 |
. . . . 5
⊢ ((((
deg1 ‘𝑅)‘𝑎) ∈ ℕ0 ∨ ((
deg1 ‘𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
30 | 12, 29 | sylbi 216 |
. . . 4
⊢ (((
deg1 ‘𝑅)‘𝑎) ∈ (ℕ0 ∪
{-∞}) → ∃𝑏
∈ ℕ0 (( deg1 ‘𝑅)‘𝑎) < 𝑏) |
31 | 11, 30 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → ∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏) |
32 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑐 = 0 → ((( deg1
‘𝑅)‘𝑎) < 𝑐 ↔ (( deg1 ‘𝑅)‘𝑎) < 0)) |
33 | 32 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑐 = 0 → (((( deg1
‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ((( deg1 ‘𝑅)‘𝑎) < 0 → 𝑎 ∈ 𝐼))) |
34 | 33 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑐 = 0 → (∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 0 → 𝑎 ∈ 𝐼))) |
35 | 34 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑐 = 0 → ((𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼)) ↔ (𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 0 → 𝑎 ∈ 𝐼)))) |
36 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((( deg1 ‘𝑅)‘𝑎) < 𝑐 ↔ (( deg1 ‘𝑅)‘𝑎) < 𝑏)) |
37 | 36 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼))) |
38 | 37 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼))) |
39 | 38 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → ((𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼)) ↔ (𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)))) |
40 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑏 + 1) → ((( deg1 ‘𝑅)‘𝑎) < 𝑐 ↔ (( deg1 ‘𝑅)‘𝑎) < (𝑏 + 1))) |
41 | 40 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑏 + 1) → (((( deg1
‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ((( deg1 ‘𝑅)‘𝑎) < (𝑏 + 1) → 𝑎 ∈ 𝐼))) |
42 | 41 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑏 + 1) → (∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < (𝑏 + 1) → 𝑎 ∈ 𝐼))) |
43 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑑 → (( deg1 ‘𝑅)‘𝑎) = (( deg1 ‘𝑅)‘𝑑)) |
44 | 43 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → ((( deg1 ‘𝑅)‘𝑎) < (𝑏 + 1) ↔ (( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1))) |
45 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → (𝑎 ∈ 𝐼 ↔ 𝑑 ∈ 𝐼)) |
46 | 44, 45 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑑 → (((( deg1 ‘𝑅)‘𝑎) < (𝑏 + 1) → 𝑎 ∈ 𝐼) ↔ ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼))) |
47 | 46 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
𝐽 ((( deg1
‘𝑅)‘𝑎) < (𝑏 + 1) → 𝑎 ∈ 𝐼) ↔ ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)) |
48 | 42, 47 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑐 = (𝑏 + 1) → (∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼) ↔ ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼))) |
49 | 48 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑐 → 𝑎 ∈ 𝐼)) ↔ (𝜑 → ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)))) |
50 | | hbtlem3.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → 𝑅 ∈ Ring) |
52 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) = (0g‘𝑃) |
53 | 8, 9, 52, 3 | deg1lt0 25161 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → ((( deg1
‘𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g‘𝑃))) |
54 | 51, 7, 53 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → ((( deg1 ‘𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g‘𝑃))) |
55 | 9 | ply1ring 21329 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
56 | 50, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ Ring) |
57 | | hbtlem3.i |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ 𝑈) |
58 | 4, 52 | lidl0cl 20396 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑃) ∈ 𝐼) |
59 | 56, 57, 58 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝑃) ∈ 𝐼) |
60 | | eleq1a 2834 |
. . . . . . . . . . . 12
⊢
((0g‘𝑃) ∈ 𝐼 → (𝑎 = (0g‘𝑃) → 𝑎 ∈ 𝐼)) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑎 = (0g‘𝑃) → 𝑎 ∈ 𝐼)) |
62 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → (𝑎 = (0g‘𝑃) → 𝑎 ∈ 𝐼)) |
63 | 54, 62 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → ((( deg1 ‘𝑅)‘𝑎) < 0 → 𝑎 ∈ 𝐼)) |
64 | 63 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 0 → 𝑎 ∈ 𝐼)) |
65 | 6 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → 𝐽 ⊆ (Base‘𝑃)) |
66 | 65 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → 𝑑 ∈ (Base‘𝑃)) |
67 | 8, 9, 3 | deg1cl 25153 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ (Base‘𝑃) → (( deg1
‘𝑅)‘𝑑) ∈ (ℕ0
∪ {-∞})) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → (( deg1 ‘𝑅)‘𝑑) ∈ (ℕ0 ∪
{-∞})) |
69 | | simpl1 1189 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → 𝑏 ∈ ℕ0) |
70 | 69 | nn0zd 12353 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → 𝑏 ∈ ℤ) |
71 | | degltp1le 25143 |
. . . . . . . . . . . . 13
⊢ ((((
deg1 ‘𝑅)‘𝑑) ∈ (ℕ0 ∪
{-∞}) ∧ 𝑏 ∈
ℤ) → ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) |
72 | 68, 70, 71 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) |
73 | | hbtlem5.e |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) |
74 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → ((𝑆‘𝐽)‘𝑥) = ((𝑆‘𝐽)‘𝑏)) |
75 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → ((𝑆‘𝐼)‘𝑥) = ((𝑆‘𝐼)‘𝑏)) |
76 | 74, 75 | sseq12d 3950 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑏 → (((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥) ↔ ((𝑆‘𝐽)‘𝑏) ⊆ ((𝑆‘𝐼)‘𝑏))) |
77 | 76 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) → ((𝑆‘𝐽)‘𝑏) ⊆ ((𝑆‘𝐼)‘𝑏)) |
78 | 73, 77 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → ((𝑆‘𝐽)‘𝑏) ⊆ ((𝑆‘𝐼)‘𝑏)) |
79 | 50 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → 𝑅 ∈ Ring) |
80 | 2 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → 𝐽 ∈ 𝑈) |
81 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → 𝑏 ∈
ℕ0) |
82 | | hbtlem.s |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
83 | 9, 4, 82, 8 | hbtlem1 40864 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ∧ 𝑏 ∈ ℕ0) → ((𝑆‘𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
84 | 79, 80, 81, 83 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → ((𝑆‘𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
85 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → 𝐼 ∈ 𝑈) |
86 | 9, 4, 82, 8 | hbtlem1 40864 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑏 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
87 | 79, 85, 81, 86 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → ((𝑆‘𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
88 | 78, 84, 87 | 3sstr3d 3963 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑) → {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
89 | 88 | 3adant3 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
91 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) → 𝑑 ∈ 𝐽) |
92 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) → (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) |
93 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) → ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑑)‘𝑏)) |
94 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑑 → (( deg1 ‘𝑅)‘𝑒) = (( deg1 ‘𝑅)‘𝑑)) |
95 | 94 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑑 → ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ↔ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) |
96 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = 𝑑 → (coe1‘𝑒) = (coe1‘𝑑)) |
97 | 96 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑑 → ((coe1‘𝑒)‘𝑏) = ((coe1‘𝑑)‘𝑏)) |
98 | 97 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑑 → (((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏) ↔ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑑)‘𝑏))) |
99 | 95, 98 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑑 → (((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)) ↔ ((( deg1 ‘𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑑)‘𝑏)))) |
100 | 99 | rspcev 3552 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ 𝐽 ∧ ((( deg1 ‘𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑑)‘𝑏))) → ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏))) |
101 | 91, 92, 93, 100 | syl12anc 833 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏))) |
102 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢
((coe1‘𝑑)‘𝑏) ∈ V |
103 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = ((coe1‘𝑑)‘𝑏) → (𝑐 = ((coe1‘𝑒)‘𝑏) ↔ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏))) |
104 | 103 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = ((coe1‘𝑑)‘𝑏) → (((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏)) ↔ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) |
105 | 104 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = ((coe1‘𝑑)‘𝑏) → (∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏)) ↔ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) |
106 | 102, 105 | elab 3602 |
. . . . . . . . . . . . . . . . 17
⊢
(((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} ↔ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏))) |
107 | 101, 106 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) → ((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
108 | 107 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → ((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
109 | 90, 108 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → ((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))}) |
110 | 104 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = ((coe1‘𝑑)‘𝑏) → (∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏)) ↔ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) |
111 | 102, 110 | elab 3602 |
. . . . . . . . . . . . . . 15
⊢
(((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} ↔ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏))) |
112 | | simpll2 1211 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝜑) |
113 | 112, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑃 ∈ Ring) |
114 | | ringgrp 19703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
115 | 113, 114 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑃 ∈ Grp) |
116 | 112, 6 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃)) |
117 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑑 ∈ 𝐽) |
118 | 116, 117 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃)) |
119 | 3, 4 | lidlss 20394 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
120 | 57, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑃)) |
121 | 112, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃)) |
122 | | simprl 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑒 ∈ 𝐼) |
123 | 121, 122 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃)) |
124 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(+g‘𝑃) = (+g‘𝑃) |
125 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-g‘𝑃) = (-g‘𝑃) |
126 | 3, 124, 125 | grpnpcan 18582 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g‘𝑃)𝑒)(+g‘𝑃)𝑒) = 𝑑) |
127 | 115, 118,
123, 126 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → ((𝑑(-g‘𝑃)𝑒)(+g‘𝑃)𝑒) = 𝑑) |
128 | 57 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → 𝐼 ∈ 𝑈) |
129 | 128 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝐼 ∈ 𝑈) |
130 | | simpll1 1210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0) |
131 | 112, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑅 ∈ Ring) |
132 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏) |
133 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → (( deg1 ‘𝑅)‘𝑒) ≤ 𝑏) |
134 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(coe1‘𝑑) = (coe1‘𝑑) |
135 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(coe1‘𝑒) = (coe1‘𝑒) |
136 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)) |
137 | 8, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136 | deg1sublt 25180 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → (( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒)) < 𝑏) |
138 | 112, 2 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝐽 ∈ 𝑈) |
139 | 1 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → 𝐼 ⊆ 𝐽) |
140 | 139 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝐼 ⊆ 𝐽) |
141 | 140, 122 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑒 ∈ 𝐽) |
142 | 4, 125 | lidlsubcl 20400 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑃 ∈ Ring ∧ 𝐽 ∈ 𝑈) ∧ (𝑑 ∈ 𝐽 ∧ 𝑒 ∈ 𝐽)) → (𝑑(-g‘𝑃)𝑒) ∈ 𝐽) |
143 | 113, 138,
117, 141, 142 | syl22anc 835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → (𝑑(-g‘𝑃)𝑒) ∈ 𝐽) |
144 | | simpll3 1212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) |
145 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (𝑑(-g‘𝑃)𝑒) → (( deg1 ‘𝑅)‘𝑎) = (( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒))) |
146 | 145 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (𝑑(-g‘𝑃)𝑒) → ((( deg1 ‘𝑅)‘𝑎) < 𝑏 ↔ (( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒)) < 𝑏)) |
147 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (𝑑(-g‘𝑃)𝑒) → (𝑎 ∈ 𝐼 ↔ (𝑑(-g‘𝑃)𝑒) ∈ 𝐼)) |
148 | 146, 147 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝑑(-g‘𝑃)𝑒) → (((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼) ↔ ((( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒)) < 𝑏 → (𝑑(-g‘𝑃)𝑒) ∈ 𝐼))) |
149 | 148 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑(-g‘𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → ((( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒)) < 𝑏 → (𝑑(-g‘𝑃)𝑒) ∈ 𝐼)) |
150 | 143, 144,
149 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → ((( deg1 ‘𝑅)‘(𝑑(-g‘𝑃)𝑒)) < 𝑏 → (𝑑(-g‘𝑃)𝑒) ∈ 𝐼)) |
151 | 137, 150 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → (𝑑(-g‘𝑃)𝑒) ∈ 𝐼) |
152 | 4, 124 | lidlacl 20397 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ((𝑑(-g‘𝑃)𝑒) ∈ 𝐼 ∧ 𝑒 ∈ 𝐼)) → ((𝑑(-g‘𝑃)𝑒)(+g‘𝑃)𝑒) ∈ 𝐼) |
153 | 113, 129,
151, 122, 152 | syl22anc 835 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → ((𝑑(-g‘𝑃)𝑒)(+g‘𝑃)𝑒) ∈ 𝐼) |
154 | 127, 153 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒 ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)))) → 𝑑 ∈ 𝐼) |
155 | 154 | rexlimdvaa 3213 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1‘𝑑)‘𝑏) = ((coe1‘𝑒)‘𝑏)) → 𝑑 ∈ 𝐼)) |
156 | 111, 155 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → (((coe1‘𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑒) ≤ 𝑏 ∧ 𝑐 = ((coe1‘𝑒)‘𝑏))} → 𝑑 ∈ 𝐼)) |
157 | 109, 156 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ (𝑑 ∈ 𝐽 ∧ (( deg1 ‘𝑅)‘𝑑) ≤ 𝑏)) → 𝑑 ∈ 𝐼) |
158 | 157 | expr 456 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → ((( deg1 ‘𝑅)‘𝑑) ≤ 𝑏 → 𝑑 ∈ 𝐼)) |
159 | 72, 158 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) ∧ 𝑑 ∈ 𝐽) → ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)) |
160 | 159 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℕ0
∧ 𝜑 ∧ ∀𝑎 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)) |
161 | 160 | 3exp 1117 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
→ (𝜑 →
(∀𝑎 ∈ 𝐽 ((( deg1
‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼) → ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)))) |
162 | 161 | a2d 29 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ ((𝜑 →
∀𝑎 ∈ 𝐽 ((( deg1
‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) → (𝜑 → ∀𝑑 ∈ 𝐽 ((( deg1 ‘𝑅)‘𝑑) < (𝑏 + 1) → 𝑑 ∈ 𝐼)))) |
163 | 35, 39, 49, 39, 64, 162 | nn0ind 12345 |
. . . . . . 7
⊢ (𝑏 ∈ ℕ0
→ (𝜑 →
∀𝑎 ∈ 𝐽 ((( deg1
‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼))) |
164 | | rsp 3129 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐽 ((( deg1
‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼) → (𝑎 ∈ 𝐽 → ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼))) |
165 | 163, 164 | syl6com 37 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ ℕ0 → (𝑎 ∈ 𝐽 → ((( deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)))) |
166 | 165 | com23 86 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐽 → (𝑏 ∈ ℕ0 → (((
deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)))) |
167 | 166 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → (𝑏 ∈ ℕ0 → (((
deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼))) |
168 | 167 | rexlimdv 3211 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → (∃𝑏 ∈ ℕ0 ((
deg1 ‘𝑅)‘𝑎) < 𝑏 → 𝑎 ∈ 𝐼)) |
169 | 31, 168 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐽) → 𝑎 ∈ 𝐼) |
170 | 1, 169 | eqelssd 3938 |
1
⊢ (𝜑 → 𝐼 = 𝐽) |