Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 43110
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . 7 (𝜑𝐽𝑈)
3 eqid 2730 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 21128 . . . . . . 7 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3948 . . . . 5 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2730 . . . . . 6 (deg1𝑅) = (deg1𝑅)
9 hbtlem.p . . . . . 6 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 25994 . . . . 5 (𝑎 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . 4 ((𝜑𝑎𝐽) → ((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 4118 . . . . 5 (((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ (((deg1𝑅)‘𝑎) ∈ ℕ0 ∨ ((deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 12451 . . . . . . 7 ℕ ⊆ ℕ0
14 nn0re 12457 . . . . . . . 8 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ((deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 12445 . . . . . . . 8 (((deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . 7 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 4018 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ ((deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 68 . . . . . 6 (((deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4608 . . . . . . 7 (((deg1𝑅)‘𝑎) ∈ {-∞} → ((deg1𝑅)‘𝑎) = -∞)
20 0nn0 12463 . . . . . . . . 9 0 ∈ ℕ0
21 mnflt0 13091 . . . . . . . . 9 -∞ < 0
22 breq2 5113 . . . . . . . . . 10 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3591 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 692 . . . . . . . 8 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 5112 . . . . . . . . 9 (((deg1𝑅)‘𝑎) = -∞ → (((deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3158 . . . . . . . 8 (((deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 258 . . . . . . 7 (((deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . 6 (((deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 857 . . . . 5 ((((deg1𝑅)‘𝑎) ∈ ℕ0 ∨ ((deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 217 . . . 4 (((deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . 3 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏)
32 breq2 5113 . . . . . . . . . . 11 (𝑐 = 0 → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < 0))
3332imbi1d 341 . . . . . . . . . 10 (𝑐 = 0 → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 3157 . . . . . . . . 9 (𝑐 = 0 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 340 . . . . . . . 8 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 5113 . . . . . . . . . . 11 (𝑐 = 𝑏 → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 341 . . . . . . . . . 10 (𝑐 = 𝑏 → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 3157 . . . . . . . . 9 (𝑐 = 𝑏 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 340 . . . . . . . 8 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 5113 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → (((deg1𝑅)‘𝑎) < 𝑐 ↔ ((deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 341 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → ((((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 3157 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6860 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → ((deg1𝑅)‘𝑎) = ((deg1𝑅)‘𝑑))
4443breq1d 5119 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (((deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2817 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 344 . . . . . . . . . . 11 (𝑎 = 𝑑 → ((((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralvw 3216 . . . . . . . . . 10 (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47bitrdi 287 . . . . . . . . 9 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 340 . . . . . . . 8 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
5150adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2730 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 26002 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → (((deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (((deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 22138 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . 13 (𝜑𝐼𝑈)
584, 52lidl0cl 21136 . . . . . . . . . . . . 13 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2824 . . . . . . . . . . . 12 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 240 . . . . . . . . 9 ((𝜑𝑎𝐽) → (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3948 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 25994 . . . . . . . . . . . . . 14 (𝑑 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 12561 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 25984 . . . . . . . . . . . . 13 ((((deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 584 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 3982 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3589 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . 20 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 43105 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 43105 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 4003 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 480 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2731 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((deg1𝑅)‘𝑒) = ((deg1𝑅)‘𝑑))
9594breq1d 5119 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((deg1𝑅)‘𝑒) ≤ 𝑏 ↔ ((deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2741 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → ((((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ (((deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3591 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (((deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 836 . . . . . . . . . . . . . . . . 17 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6873 . . . . . . . . . . . . . . . . . 18 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ((coe1𝑑)‘𝑏) → ((((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3158 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3648 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 481 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3949 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3648 . . . . . . . . . . . . . . 15 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1214 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 20153 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3949 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 21128 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3949 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
125 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 18970 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1213 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑑) = (coe1𝑑)
135 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑒) = (coe1𝑒)
136 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 26021 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3949 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 21140 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1215 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6860 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → ((deg1𝑅)‘𝑎) = ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 5119 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (((deg1𝑅)‘𝑎) < 𝑏 ↔ ((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑑(-g𝑃)𝑒) → ((((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3589 . . . . . . . . . . . . . . . . . . . 20 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (((deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 21137 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 838 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2830 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3136 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155biimtrid 242 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 (((deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ ((deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 456 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 240 . . . . . . . . . . 11 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 3126 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1119 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 (((deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 12635 . . . . . . 7 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 3226 . . . . . . 7 (∀𝑎𝐽 (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 37 . . . . . 6 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 86 . . . . 5 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 406 . . . 4 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → (((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3133 . . 3 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 ((deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . 2 ((𝜑𝑎𝐽) → 𝑎𝐼)
1701, 169eqelssd 3970 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  cun 3914  wss 3916  {csn 4591   class class class wbr 5109  cfv 6513  (class class class)co 7389  cr 11073  0cc0 11074  1c1 11075   + caddc 11077  -∞cmnf 11212   < clt 11214  cle 11215  cn 12187  0cn0 12448  cz 12535  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Grpcgrp 18871  -gcsg 18873  Ringcrg 20148  LIdealclidl 21122  Poly1cpl1 22067  coe1cco1 22068  deg1cdg1 25965  ldgIdlSeqcldgis 43103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-cnfld 21271  df-psr 21824  df-mpl 21826  df-opsr 21828  df-psr1 22070  df-ply1 22072  df-coe1 22073  df-mdeg 25966  df-deg1 25967  df-ldgis 43104
This theorem is referenced by:  hbt  43112
  Copyright terms: Public domain W3C validator