Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 42384
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . 7 (𝜑𝐽𝑈)
3 eqid 2724 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 21063 . . . . . . 7 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3975 . . . . 5 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2724 . . . . . 6 ( deg1𝑅) = ( deg1𝑅)
9 hbtlem.p . . . . . 6 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 25943 . . . . 5 (𝑎 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . 4 ((𝜑𝑎𝐽) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 4141 . . . . 5 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 12473 . . . . . . 7 ℕ ⊆ ℕ0
14 nn0re 12479 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → (( deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 12467 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 4044 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 68 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4638 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ {-∞} → (( deg1𝑅)‘𝑎) = -∞)
20 0nn0 12485 . . . . . . . . 9 0 ∈ ℕ0
21 mnflt0 13103 . . . . . . . . 9 -∞ < 0
22 breq2 5143 . . . . . . . . . 10 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3604 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 689 . . . . . . . 8 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 5142 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) = -∞ → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3170 . . . . . . . 8 ((( deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 258 . . . . . . 7 ((( deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 854 . . . . 5 (((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 216 . . . 4 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . 3 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
32 breq2 5143 . . . . . . . . . . 11 (𝑐 = 0 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 0))
3332imbi1d 341 . . . . . . . . . 10 (𝑐 = 0 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 3169 . . . . . . . . 9 (𝑐 = 0 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 340 . . . . . . . 8 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 5143 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 341 . . . . . . . . . 10 (𝑐 = 𝑏 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 3169 . . . . . . . . 9 (𝑐 = 𝑏 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 340 . . . . . . . 8 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 5143 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 341 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 3169 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6882 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘𝑑))
4443breq1d 5149 . . . . . . . . . . . 12 (𝑎 = 𝑑 → ((( deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2813 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 344 . . . . . . . . . . 11 (𝑎 = 𝑑 → (((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralvw 3226 . . . . . . . . . 10 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47bitrdi 287 . . . . . . . . 9 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 340 . . . . . . . 8 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
5150adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2724 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 25951 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 583 . . . . . . . . . 10 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 22091 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . 13 (𝜑𝐼𝑈)
584, 52lidl0cl 21071 . . . . . . . . . . . . 13 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2820 . . . . . . . . . . . 12 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 239 . . . . . . . . 9 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 3138 . . . . . . . 8 (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3975 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 25943 . . . . . . . . . . . . . 14 (𝑑 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1188 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 12582 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 25933 . . . . . . . . . . . . 13 (((( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 583 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6882 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6882 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 4008 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3602 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . 20 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 42379 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 42379 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 4021 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1129 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 480 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2725 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6882 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → (( deg1𝑅)‘𝑒) = (( deg1𝑅)‘𝑑))
9594breq1d 5149 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → ((( deg1𝑅)‘𝑒) ≤ 𝑏 ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6884 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3604 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 834 . . . . . . . . . . . . . . . . 17 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6895 . . . . . . . . . . . . . . . . . 18 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2728 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑐 = ((coe1𝑑)‘𝑏) → (((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3170 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3661 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 481 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3976 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3170 . . . . . . . . . . . . . . . 16 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3661 . . . . . . . . . . . . . . 15 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1210 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 20135 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3976 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 21063 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 768 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3976 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2724 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
125 eqid 2724 . . . . . . . . . . . . . . . . . . 19 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 18952 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1209 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2724 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑑) = (coe1𝑑)
135 eqid 2724 . . . . . . . . . . . . . . . . . . . 20 (coe1𝑒) = (coe1𝑒)
136 simprrr 779 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 25970 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3976 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 21075 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1211 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 5149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑑(-g𝑃)𝑒) → (((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3602 . . . . . . . . . . . . . . . . . . . 20 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 21072 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 836 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2826 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3148 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155biimtrid 241 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 456 . . . . . . . . . . . 12 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 239 . . . . . . . . . . 11 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 3138 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1116 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 12655 . . . . . . 7 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 3236 . . . . . . 7 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 37 . . . . . 6 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 86 . . . . 5 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 406 . . . 4 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3145 . . 3 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . 2 ((𝜑𝑎𝐽) → 𝑎𝐼)
1701, 169eqelssd 3996 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  {cab 2701  wral 3053  wrex 3062  cun 3939  wss 3941  {csn 4621   class class class wbr 5139  cfv 6534  (class class class)co 7402  cr 11106  0cc0 11107  1c1 11108   + caddc 11110  -∞cmnf 11244   < clt 11246  cle 11247  cn 12210  0cn0 12470  cz 12556  Basecbs 17145  +gcplusg 17198  0gc0g 17386  Grpcgrp 18855  -gcsg 18857  Ringcrg 20130  LIdealclidl 21057  Poly1cpl1 22021  coe1cco1 22022   deg1 cdg1 25911  ldgIdlSeqcldgis 42377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-0g 17388  df-gsum 17389  df-prds 17394  df-pws 17396  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-subg 19042  df-ghm 19131  df-cntz 19225  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-cring 20133  df-oppr 20228  df-dvdsr 20251  df-unit 20252  df-invr 20282  df-subrng 20438  df-subrg 20463  df-lmod 20700  df-lss 20771  df-sra 21013  df-rgmod 21014  df-lidl 21059  df-rlreg 21185  df-cnfld 21231  df-psr 21773  df-mpl 21775  df-opsr 21777  df-psr1 22024  df-ply1 22026  df-coe1 22027  df-mdeg 25912  df-deg1 25913  df-ldgis 42378
This theorem is referenced by:  hbt  42386
  Copyright terms: Public domain W3C validator