MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   GIF version

Theorem bitsfzolem 16458
Description: Lemma for bitsfzo 16459. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1 (𝜑𝑁 ∈ ℕ0)
bitsfzo.2 (𝜑𝑀 ∈ ℕ0)
bitsfzo.3 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
bitsfzo.4 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
Assertion
Ref Expression
bitsfzolem (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑀(𝑛)

Proof of Theorem bitsfzolem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12899 . . 3 0 = (ℤ‘0)
31, 2eleqtrdi 2845 . 2 (𝜑𝑁 ∈ (ℤ‘0))
4 2nn 12318 . . . . 5 2 ∈ ℕ
54a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
6 bitsfzo.2 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6nnexpcld 14268 . . 3 (𝜑 → (2↑𝑀) ∈ ℕ)
87nnzd 12620 . 2 (𝜑 → (2↑𝑀) ∈ ℤ)
9 bitsfzo.3 . . . . . . . 8 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
109adantr 480 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (bits‘𝑁) ⊆ (0..^𝑀))
11 n2dvds1 16392 . . . . . . . . 9 ¬ 2 ∥ 1
124a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℕ)
13 ssrab2 4060 . . . . . . . . . . . . . . . . . . . . 21 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ ℕ0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
1513, 2sseqtri 4012 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0)
16 nnssnn0 12509 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ ⊆ ℕ0
171nn0red 12568 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℝ)
18 2re 12319 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ)
20 1lt2 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 < 2)
22 expnbnd 14255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
2317, 19, 21, 22syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
24 ssrexv 4033 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛)))
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
26 rabn0 4369 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
2725, 26sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅)
28 infssuzcl 12953 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
2915, 27, 28sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3014, 29eqeltrid 2839 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3113, 30sselid 3961 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
3231nn0zd 12619 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ ℤ)
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℤ)
34 0red 11243 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ∈ ℝ)
356nn0zd 12619 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℤ)
3736zred 12702 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℝ)
3833zred 12702 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℝ)
396adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4039nn0ge0d 12570 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ≤ 𝑀)
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ)
4241, 39reexpcld 14186 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ∈ ℝ)
4317adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℝ)
445, 31nnexpcld 14268 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2↑𝑆) ∈ ℕ)
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℕ)
4645nnred 12260 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℝ)
47 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ≤ 𝑁)
4830adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
49 oveq2 7418 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑆 → (2↑𝑚) = (2↑𝑆))
5049breq2d 5136 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑆 → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑𝑆)))
51 oveq2 7418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251breq2d 5136 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑁 < (2↑𝑛) ↔ 𝑁 < (2↑𝑚)))
5352cbvrabv 3431 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} = {𝑚 ∈ ℕ0𝑁 < (2↑𝑚)}
5450, 53elrab2 3679 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ (𝑆 ∈ ℕ0𝑁 < (2↑𝑆)))
5554simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑁 < (2↑𝑆))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < (2↑𝑆))
5742, 43, 46, 47, 56lelttrd 11398 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) < (2↑𝑆))
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 < 2)
5941, 36, 33, 58ltexp2d 14274 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ (2↑𝑀) < (2↑𝑆)))
6057, 59mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 < 𝑆)
6134, 37, 38, 40, 60lelttrd 11398 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 < 𝑆)
62 elnnz 12603 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℤ ∧ 0 < 𝑆))
6333, 61, 62sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℕ)
64 nnm1nn0 12547 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℕ0)
6612, 65nnexpcld 14268 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℕ)
6766nncnd 12261 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℂ)
6867mullidd 11258 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) = (2↑(𝑆 − 1)))
6966nnred 12260 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ)
7038ltm1d 12179 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑆)
7165nn0red 12568 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℝ)
7271, 38ltnled 11387 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆 − 1)))
7370, 72mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆 ≤ (𝑆 − 1))
74 oveq2 7418 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑆 − 1) → (2↑𝑚) = (2↑(𝑆 − 1)))
7574breq2d 5136 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑆 − 1) → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑(𝑆 − 1))))
7675, 53elrab2 3679 . . . . . . . . . . . . . . . . 17 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ ((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))))
77 infssuzle 12952 . . . . . . . . . . . . . . . . . . . 20 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ (𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7815, 77mpan 690 . . . . . . . . . . . . . . . . . . 19 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7914, 78eqbrtrid 5159 . . . . . . . . . . . . . . . . . 18 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1))
8079a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1)))
8176, 80biimtrrid 243 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))) → 𝑆 ≤ (𝑆 − 1)))
8265, 81mpand 695 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 < (2↑(𝑆 − 1)) → 𝑆 ≤ (𝑆 − 1)))
8373, 82mtod 198 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑁 < (2↑(𝑆 − 1)))
8469, 43, 83nltled 11390 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ≤ 𝑁)
8568, 84eqbrtrd 5146 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) ≤ 𝑁)
86 1red 11241 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℝ)
87 2rp 13018 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
8887a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ+)
89 1z 12627 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
9089a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℤ)
9133, 90zsubcld 12707 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℤ)
9288, 91rpexpcld 14270 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ+)
9386, 43, 92lemuldivd 13105 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((1 · (2↑(𝑆 − 1))) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑(𝑆 − 1)))))
9485, 93mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ≤ (𝑁 / (2↑(𝑆 − 1))))
95 2cn 12320 . . . . . . . . . . . . . . 15 2 ∈ ℂ
96 expm1t 14113 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑆 ∈ ℕ) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9795, 63, 96sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9856, 97breqtrd 5150 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < ((2↑(𝑆 − 1)) · 2))
9943, 41, 92ltdivmuld 13107 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑁 / (2↑(𝑆 − 1))) < 2 ↔ 𝑁 < ((2↑(𝑆 − 1)) · 2)))
10098, 99mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < 2)
101 df-2 12308 . . . . . . . . . . . 12 2 = (1 + 1)
102100, 101breqtrdi 5165 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))
10343, 92rerpdivcld 13087 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) ∈ ℝ)
104 flbi 13838 . . . . . . . . . . . 12 (((𝑁 / (2↑(𝑆 − 1))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
105103, 89, 104sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
10694, 102, 105mpbir2and 713 . . . . . . . . . 10 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1)
107106breq2d 5136 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))) ↔ 2 ∥ 1))
10811, 107mtbiri 327 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))))
1091nn0zd 12619 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
110 bitsval2 16449 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑆 − 1) ∈ ℕ0) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
111109, 65, 110syl2an2r 685 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
112108, 111mpbird 257 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (bits‘𝑁))
11310, 112sseldd 3964 . . . . . 6 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (0..^𝑀))
114 elfzolt2 13690 . . . . . 6 ((𝑆 − 1) ∈ (0..^𝑀) → (𝑆 − 1) < 𝑀)
115113, 114syl 17 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑀)
116 zlem1lt 12649 . . . . . 6 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
11732, 36, 116syl2an2r 685 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
118115, 117mpbird 257 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆𝑀)
11937, 38ltnled 11387 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ ¬ 𝑆𝑀))
12060, 119mpbid 232 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆𝑀)
121118, 120pm2.65da 816 . . 3 (𝜑 → ¬ (2↑𝑀) ≤ 𝑁)
1227nnred 12260 . . . 4 (𝜑 → (2↑𝑀) ∈ ℝ)
12317, 122ltnled 11387 . . 3 (𝜑 → (𝑁 < (2↑𝑀) ↔ ¬ (2↑𝑀) ≤ 𝑁))
124121, 123mpbird 257 . 2 (𝜑𝑁 < (2↑𝑀))
125 elfzo2 13684 . 2 (𝑁 ∈ (0..^(2↑𝑀)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑀) ∈ ℤ ∧ 𝑁 < (2↑𝑀)))
1263, 8, 124, 125syl3anbrc 1344 1 (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  {crab 3420  wss 3931  c0 4313   class class class wbr 5124  cfv 6536  (class class class)co 7410  infcinf 9458  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ..^cfzo 13676  cfl 13812  cexp 14084  cdvds 16277  bitscbits 16443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-dvds 16278  df-bits 16446
This theorem is referenced by:  bitsfzo  16459
  Copyright terms: Public domain W3C validator