MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   GIF version

Theorem bitsfzolem 16069
Description: Lemma for bitsfzo 16070. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1 (𝜑𝑁 ∈ ℕ0)
bitsfzo.2 (𝜑𝑀 ∈ ℕ0)
bitsfzo.3 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
bitsfzo.4 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
Assertion
Ref Expression
bitsfzolem (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑀(𝑛)

Proof of Theorem bitsfzolem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12549 . . 3 0 = (ℤ‘0)
31, 2eleqtrdi 2849 . 2 (𝜑𝑁 ∈ (ℤ‘0))
4 2nn 11976 . . . . 5 2 ∈ ℕ
54a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
6 bitsfzo.2 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6nnexpcld 13888 . . 3 (𝜑 → (2↑𝑀) ∈ ℕ)
87nnzd 12354 . 2 (𝜑 → (2↑𝑀) ∈ ℤ)
9 bitsfzo.3 . . . . . . . 8 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
109adantr 480 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (bits‘𝑁) ⊆ (0..^𝑀))
11 n2dvds1 16005 . . . . . . . . 9 ¬ 2 ∥ 1
124a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℕ)
13 ssrab2 4009 . . . . . . . . . . . . . . . . . . . . 21 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ ℕ0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
1513, 2sseqtri 3953 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0)
16 nnssnn0 12166 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ ⊆ ℕ0
171nn0red 12224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℝ)
18 2re 11977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ)
20 1lt2 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 < 2)
22 expnbnd 13875 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
2317, 19, 21, 22syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
24 ssrexv 3984 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛)))
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
26 rabn0 4316 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
2725, 26sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅)
28 infssuzcl 12601 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
2915, 27, 28sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3014, 29eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3113, 30sselid 3915 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
3231nn0zd 12353 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ ℤ)
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℤ)
34 0red 10909 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ∈ ℝ)
356nn0zd 12353 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℤ)
3736zred 12355 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℝ)
3833zred 12355 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℝ)
396adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4039nn0ge0d 12226 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ≤ 𝑀)
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ)
4241, 39reexpcld 13809 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ∈ ℝ)
4317adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℝ)
445, 31nnexpcld 13888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2↑𝑆) ∈ ℕ)
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℕ)
4645nnred 11918 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℝ)
47 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ≤ 𝑁)
4830adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
49 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑆 → (2↑𝑚) = (2↑𝑆))
5049breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑆 → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑𝑆)))
51 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑁 < (2↑𝑛) ↔ 𝑁 < (2↑𝑚)))
5352cbvrabv 3416 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} = {𝑚 ∈ ℕ0𝑁 < (2↑𝑚)}
5450, 53elrab2 3620 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ (𝑆 ∈ ℕ0𝑁 < (2↑𝑆)))
5554simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑁 < (2↑𝑆))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < (2↑𝑆))
5742, 43, 46, 47, 56lelttrd 11063 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) < (2↑𝑆))
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 < 2)
5941, 36, 33, 58ltexp2d 13896 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ (2↑𝑀) < (2↑𝑆)))
6057, 59mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 < 𝑆)
6134, 37, 38, 40, 60lelttrd 11063 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 < 𝑆)
62 elnnz 12259 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℤ ∧ 0 < 𝑆))
6333, 61, 62sylanbrc 582 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℕ)
64 nnm1nn0 12204 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℕ0)
6612, 65nnexpcld 13888 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℕ)
6766nncnd 11919 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℂ)
6867mulid2d 10924 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) = (2↑(𝑆 − 1)))
6966nnred 11918 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ)
7038ltm1d 11837 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑆)
7165nn0red 12224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℝ)
7271, 38ltnled 11052 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆 − 1)))
7370, 72mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆 ≤ (𝑆 − 1))
74 oveq2 7263 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑆 − 1) → (2↑𝑚) = (2↑(𝑆 − 1)))
7574breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑆 − 1) → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑(𝑆 − 1))))
7675, 53elrab2 3620 . . . . . . . . . . . . . . . . 17 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ ((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))))
77 infssuzle 12600 . . . . . . . . . . . . . . . . . . . 20 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ (𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7815, 77mpan 686 . . . . . . . . . . . . . . . . . . 19 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7914, 78eqbrtrid 5105 . . . . . . . . . . . . . . . . . 18 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1))
8079a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1)))
8176, 80syl5bir 242 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))) → 𝑆 ≤ (𝑆 − 1)))
8265, 81mpand 691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 < (2↑(𝑆 − 1)) → 𝑆 ≤ (𝑆 − 1)))
8373, 82mtod 197 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑁 < (2↑(𝑆 − 1)))
8469, 43, 83nltled 11055 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ≤ 𝑁)
8568, 84eqbrtrd 5092 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) ≤ 𝑁)
86 1red 10907 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℝ)
87 2rp 12664 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
8887a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ+)
89 1z 12280 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
9089a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℤ)
9133, 90zsubcld 12360 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℤ)
9288, 91rpexpcld 13890 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ+)
9386, 43, 92lemuldivd 12750 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((1 · (2↑(𝑆 − 1))) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑(𝑆 − 1)))))
9485, 93mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ≤ (𝑁 / (2↑(𝑆 − 1))))
95 2cn 11978 . . . . . . . . . . . . . . 15 2 ∈ ℂ
96 expm1t 13739 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑆 ∈ ℕ) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9795, 63, 96sylancr 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9856, 97breqtrd 5096 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < ((2↑(𝑆 − 1)) · 2))
9943, 41, 92ltdivmuld 12752 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑁 / (2↑(𝑆 − 1))) < 2 ↔ 𝑁 < ((2↑(𝑆 − 1)) · 2)))
10098, 99mpbird 256 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < 2)
101 df-2 11966 . . . . . . . . . . . 12 2 = (1 + 1)
102100, 101breqtrdi 5111 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))
10343, 92rerpdivcld 12732 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) ∈ ℝ)
104 flbi 13464 . . . . . . . . . . . 12 (((𝑁 / (2↑(𝑆 − 1))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
105103, 89, 104sylancl 585 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
10694, 102, 105mpbir2and 709 . . . . . . . . . 10 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1)
107106breq2d 5082 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))) ↔ 2 ∥ 1))
10811, 107mtbiri 326 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))))
1091nn0zd 12353 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
110 bitsval2 16060 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑆 − 1) ∈ ℕ0) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
111109, 65, 110syl2an2r 681 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
112108, 111mpbird 256 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (bits‘𝑁))
11310, 112sseldd 3918 . . . . . 6 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (0..^𝑀))
114 elfzolt2 13325 . . . . . 6 ((𝑆 − 1) ∈ (0..^𝑀) → (𝑆 − 1) < 𝑀)
115113, 114syl 17 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑀)
116 zlem1lt 12302 . . . . . 6 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
11732, 36, 116syl2an2r 681 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
118115, 117mpbird 256 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆𝑀)
11937, 38ltnled 11052 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ ¬ 𝑆𝑀))
12060, 119mpbid 231 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆𝑀)
121118, 120pm2.65da 813 . . 3 (𝜑 → ¬ (2↑𝑀) ≤ 𝑁)
1227nnred 11918 . . . 4 (𝜑 → (2↑𝑀) ∈ ℝ)
12317, 122ltnled 11052 . . 3 (𝜑 → (𝑁 < (2↑𝑀) ↔ ¬ (2↑𝑀) ≤ 𝑁))
124121, 123mpbird 256 . 2 (𝜑𝑁 < (2↑𝑀))
125 elfzo2 13319 . 2 (𝑁 ∈ (0..^(2↑𝑀)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑀) ∈ ℤ ∧ 𝑁 < (2↑𝑀)))
1263, 8, 124, 125syl3anbrc 1341 1 (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ..^cfzo 13311  cfl 13438  cexp 13710  cdvds 15891  bitscbits 16054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-dvds 15892  df-bits 16057
This theorem is referenced by:  bitsfzo  16070
  Copyright terms: Public domain W3C validator