MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   GIF version

Theorem bitsfzolem 15786
Description: Lemma for bitsfzo 15787. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1 (𝜑𝑁 ∈ ℕ0)
bitsfzo.2 (𝜑𝑀 ∈ ℕ0)
bitsfzo.3 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
bitsfzo.4 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
Assertion
Ref Expression
bitsfzolem (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑀(𝑛)

Proof of Theorem bitsfzolem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12283 . . 3 0 = (ℤ‘0)
31, 2eleqtrdi 2926 . 2 (𝜑𝑁 ∈ (ℤ‘0))
4 2nn 11713 . . . . 5 2 ∈ ℕ
54a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
6 bitsfzo.2 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6nnexpcld 13609 . . 3 (𝜑 → (2↑𝑀) ∈ ℕ)
87nnzd 12089 . 2 (𝜑 → (2↑𝑀) ∈ ℤ)
9 bitsfzo.3 . . . . . . . 8 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
109adantr 483 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (bits‘𝑁) ⊆ (0..^𝑀))
11 n2dvds1 15720 . . . . . . . . 9 ¬ 2 ∥ 1
124a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℕ)
13 ssrab2 4059 . . . . . . . . . . . . . . . . . . . . 21 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ ℕ0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
1513, 2sseqtri 4006 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0)
16 nnssnn0 11903 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ ⊆ ℕ0
171nn0red 11959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℝ)
18 2re 11714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ)
20 1lt2 11811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 < 2)
22 expnbnd 13596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
2317, 19, 21, 22syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
24 ssrexv 4037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛)))
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
26 rabn0 4342 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
2725, 26sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅)
28 infssuzcl 12335 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
2915, 27, 28sylancr 589 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3014, 29eqeltrid 2920 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3113, 30sseldi 3968 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
3231nn0zd 12088 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ ℤ)
3332adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℤ)
34 0red 10647 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ∈ ℝ)
356nn0zd 12088 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
3635adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℤ)
3736zred 12090 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℝ)
3833zred 12090 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℝ)
396adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4039nn0ge0d 11961 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ≤ 𝑀)
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ)
4241, 39reexpcld 13530 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ∈ ℝ)
4317adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℝ)
445, 31nnexpcld 13609 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2↑𝑆) ∈ ℕ)
4544adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℕ)
4645nnred 11656 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℝ)
47 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ≤ 𝑁)
4830adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
49 oveq2 7167 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑆 → (2↑𝑚) = (2↑𝑆))
5049breq2d 5081 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑆 → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑𝑆)))
51 oveq2 7167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251breq2d 5081 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑁 < (2↑𝑛) ↔ 𝑁 < (2↑𝑚)))
5352cbvrabv 3494 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} = {𝑚 ∈ ℕ0𝑁 < (2↑𝑚)}
5450, 53elrab2 3686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ (𝑆 ∈ ℕ0𝑁 < (2↑𝑆)))
5554simprbi 499 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑁 < (2↑𝑆))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < (2↑𝑆))
5742, 43, 46, 47, 56lelttrd 10801 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) < (2↑𝑆))
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 < 2)
5941, 36, 33, 58ltexp2d 13617 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ (2↑𝑀) < (2↑𝑆)))
6057, 59mpbird 259 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 < 𝑆)
6134, 37, 38, 40, 60lelttrd 10801 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 < 𝑆)
62 elnnz 11994 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℤ ∧ 0 < 𝑆))
6333, 61, 62sylanbrc 585 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℕ)
64 nnm1nn0 11941 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℕ0)
6612, 65nnexpcld 13609 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℕ)
6766nncnd 11657 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℂ)
6867mulid2d 10662 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) = (2↑(𝑆 − 1)))
6966nnred 11656 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ)
7038ltm1d 11575 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑆)
7165nn0red 11959 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℝ)
7271, 38ltnled 10790 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆 − 1)))
7370, 72mpbid 234 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆 ≤ (𝑆 − 1))
74 oveq2 7167 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑆 − 1) → (2↑𝑚) = (2↑(𝑆 − 1)))
7574breq2d 5081 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑆 − 1) → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑(𝑆 − 1))))
7675, 53elrab2 3686 . . . . . . . . . . . . . . . . 17 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ ((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))))
77 infssuzle 12334 . . . . . . . . . . . . . . . . . . . 20 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ (𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7815, 77mpan 688 . . . . . . . . . . . . . . . . . . 19 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7914, 78eqbrtrid 5104 . . . . . . . . . . . . . . . . . 18 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1))
8079a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1)))
8176, 80syl5bir 245 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))) → 𝑆 ≤ (𝑆 − 1)))
8265, 81mpand 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 < (2↑(𝑆 − 1)) → 𝑆 ≤ (𝑆 − 1)))
8373, 82mtod 200 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑁 < (2↑(𝑆 − 1)))
8469, 43, 83nltled 10793 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ≤ 𝑁)
8568, 84eqbrtrd 5091 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) ≤ 𝑁)
86 1red 10645 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℝ)
87 2rp 12397 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
8887a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ+)
89 1z 12015 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
9089a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℤ)
9133, 90zsubcld 12095 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℤ)
9288, 91rpexpcld 13611 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ+)
9386, 43, 92lemuldivd 12483 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((1 · (2↑(𝑆 − 1))) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑(𝑆 − 1)))))
9485, 93mpbid 234 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ≤ (𝑁 / (2↑(𝑆 − 1))))
95 2cn 11715 . . . . . . . . . . . . . . 15 2 ∈ ℂ
96 expm1t 13460 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑆 ∈ ℕ) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9795, 63, 96sylancr 589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9856, 97breqtrd 5095 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < ((2↑(𝑆 − 1)) · 2))
9943, 41, 92ltdivmuld 12485 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑁 / (2↑(𝑆 − 1))) < 2 ↔ 𝑁 < ((2↑(𝑆 − 1)) · 2)))
10098, 99mpbird 259 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < 2)
101 df-2 11703 . . . . . . . . . . . 12 2 = (1 + 1)
102100, 101breqtrdi 5110 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))
10343, 92rerpdivcld 12465 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) ∈ ℝ)
104 flbi 13189 . . . . . . . . . . . 12 (((𝑁 / (2↑(𝑆 − 1))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
105103, 89, 104sylancl 588 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
10694, 102, 105mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1)
107106breq2d 5081 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))) ↔ 2 ∥ 1))
10811, 107mtbiri 329 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))))
1091nn0zd 12088 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
110 bitsval2 15777 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑆 − 1) ∈ ℕ0) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
111109, 65, 110syl2an2r 683 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
112108, 111mpbird 259 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (bits‘𝑁))
11310, 112sseldd 3971 . . . . . 6 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (0..^𝑀))
114 elfzolt2 13050 . . . . . 6 ((𝑆 − 1) ∈ (0..^𝑀) → (𝑆 − 1) < 𝑀)
115113, 114syl 17 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑀)
116 zlem1lt 12037 . . . . . 6 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
11732, 36, 116syl2an2r 683 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
118115, 117mpbird 259 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆𝑀)
11937, 38ltnled 10790 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ ¬ 𝑆𝑀))
12060, 119mpbid 234 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆𝑀)
121118, 120pm2.65da 815 . . 3 (𝜑 → ¬ (2↑𝑀) ≤ 𝑁)
1227nnred 11656 . . . 4 (𝜑 → (2↑𝑀) ∈ ℝ)
12317, 122ltnled 10790 . . 3 (𝜑 → (𝑁 < (2↑𝑀) ↔ ¬ (2↑𝑀) ≤ 𝑁))
124121, 123mpbird 259 . 2 (𝜑𝑁 < (2↑𝑀))
125 elfzo2 13044 . 2 (𝑁 ∈ (0..^(2↑𝑀)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑀) ∈ ℤ ∧ 𝑁 < (2↑𝑀)))
1263, 8, 124, 125syl3anbrc 1339 1 (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wrex 3142  {crab 3145  wss 3939  c0 4294   class class class wbr 5069  cfv 6358  (class class class)co 7159  infcinf 8908  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ..^cfzo 13036  cfl 13163  cexp 13432  cdvds 15610  bitscbits 15771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-dvds 15611  df-bits 15774
This theorem is referenced by:  bitsfzo  15787
  Copyright terms: Public domain W3C validator