MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   GIF version

Theorem bitsfzolem 16314
Description: Lemma for bitsfzo 16315. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1 (𝜑𝑁 ∈ ℕ0)
bitsfzo.2 (𝜑𝑀 ∈ ℕ0)
bitsfzo.3 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
bitsfzo.4 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
Assertion
Ref Expression
bitsfzolem (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑀(𝑛)

Proof of Theorem bitsfzolem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12805 . . 3 0 = (ℤ‘0)
31, 2eleqtrdi 2848 . 2 (𝜑𝑁 ∈ (ℤ‘0))
4 2nn 12226 . . . . 5 2 ∈ ℕ
54a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
6 bitsfzo.2 . . . 4 (𝜑𝑀 ∈ ℕ0)
75, 6nnexpcld 14148 . . 3 (𝜑 → (2↑𝑀) ∈ ℕ)
87nnzd 12526 . 2 (𝜑 → (2↑𝑀) ∈ ℤ)
9 bitsfzo.3 . . . . . . . 8 (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀))
109adantr 481 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (bits‘𝑁) ⊆ (0..^𝑀))
11 n2dvds1 16250 . . . . . . . . 9 ¬ 2 ∥ 1
124a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℕ)
13 ssrab2 4037 . . . . . . . . . . . . . . . . . . . . 21 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ ℕ0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < )
1513, 2sseqtri 3980 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0)
16 nnssnn0 12416 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℕ ⊆ ℕ0
171nn0red 12474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℝ)
18 2re 12227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ)
20 1lt2 12324 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 1 < 2)
22 expnbnd 14135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
2317, 19, 21, 22syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛))
24 ssrexv 4011 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ⊆ ℕ0 → (∃𝑛 ∈ ℕ 𝑁 < (2↑𝑛) → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛)))
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
26 rabn0 4345 . . . . . . . . . . . . . . . . . . . . . . . 24 ({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0 𝑁 < (2↑𝑛))
2725, 26sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅)
28 infssuzcl 12857 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
2915, 27, 28sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3014, 29eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
3113, 30sselid 3942 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
3231nn0zd 12525 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 ∈ ℤ)
3332adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℤ)
34 0red 11158 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ∈ ℝ)
356nn0zd 12525 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 ∈ ℤ)
3635adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℤ)
3736zred 12607 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℝ)
3833zred 12607 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℝ)
396adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4039nn0ge0d 12476 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 ≤ 𝑀)
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ)
4241, 39reexpcld 14068 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ∈ ℝ)
4317adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 ∈ ℝ)
445, 31nnexpcld 14148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2↑𝑆) ∈ ℕ)
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℕ)
4645nnred 12168 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) ∈ ℝ)
47 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) ≤ 𝑁)
4830adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)})
49 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑆 → (2↑𝑚) = (2↑𝑆))
5049breq2d 5117 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑆 → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑𝑆)))
51 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
5251breq2d 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑁 < (2↑𝑛) ↔ 𝑁 < (2↑𝑚)))
5352cbvrabv 3417 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} = {𝑚 ∈ ℕ0𝑁 < (2↑𝑚)}
5450, 53elrab2 3648 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ (𝑆 ∈ ℕ0𝑁 < (2↑𝑆)))
5554simprbi 497 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑁 < (2↑𝑆))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < (2↑𝑆))
5742, 43, 46, 47, 56lelttrd 11313 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑀) < (2↑𝑆))
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 < 2)
5941, 36, 33, 58ltexp2d 14154 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ (2↑𝑀) < (2↑𝑆)))
6057, 59mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑀 < 𝑆)
6134, 37, 38, 40, 60lelttrd 11313 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 0 < 𝑆)
62 elnnz 12509 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℤ ∧ 0 < 𝑆))
6333, 61, 62sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆 ∈ ℕ)
64 nnm1nn0 12454 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℕ0)
6612, 65nnexpcld 14148 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℕ)
6766nncnd 12169 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℂ)
6867mulid2d 11173 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) = (2↑(𝑆 − 1)))
6966nnred 12168 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ)
7038ltm1d 12087 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑆)
7165nn0red 12474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℝ)
7271, 38ltnled 11302 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) < 𝑆 ↔ ¬ 𝑆 ≤ (𝑆 − 1)))
7370, 72mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆 ≤ (𝑆 − 1))
74 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑚 = (𝑆 − 1) → (2↑𝑚) = (2↑(𝑆 − 1)))
7574breq2d 5117 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑆 − 1) → (𝑁 < (2↑𝑚) ↔ 𝑁 < (2↑(𝑆 − 1))))
7675, 53elrab2 3648 . . . . . . . . . . . . . . . . 17 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ↔ ((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))))
77 infssuzle 12856 . . . . . . . . . . . . . . . . . . . 20 (({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} ⊆ (ℤ‘0) ∧ (𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}) → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7815, 77mpan 688 . . . . . . . . . . . . . . . . . . 19 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → inf({𝑛 ∈ ℕ0𝑁 < (2↑𝑛)}, ℝ, < ) ≤ (𝑆 − 1))
7914, 78eqbrtrid 5140 . . . . . . . . . . . . . . . . . 18 ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1))
8079a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ {𝑛 ∈ ℕ0𝑁 < (2↑𝑛)} → 𝑆 ≤ (𝑆 − 1)))
8176, 80biimtrrid 242 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (((𝑆 − 1) ∈ ℕ0𝑁 < (2↑(𝑆 − 1))) → 𝑆 ≤ (𝑆 − 1)))
8265, 81mpand 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 < (2↑(𝑆 − 1)) → 𝑆 ≤ (𝑆 − 1)))
8373, 82mtod 197 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑁 < (2↑(𝑆 − 1)))
8469, 43, 83nltled 11305 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ≤ 𝑁)
8568, 84eqbrtrd 5127 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (1 · (2↑(𝑆 − 1))) ≤ 𝑁)
86 1red 11156 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℝ)
87 2rp 12920 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
8887a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 2 ∈ ℝ+)
89 1z 12533 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
9089a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ∈ ℤ)
9133, 90zsubcld 12612 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ ℤ)
9288, 91rpexpcld 14150 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑(𝑆 − 1)) ∈ ℝ+)
9386, 43, 92lemuldivd 13006 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((1 · (2↑(𝑆 − 1))) ≤ 𝑁 ↔ 1 ≤ (𝑁 / (2↑(𝑆 − 1)))))
9485, 93mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 1 ≤ (𝑁 / (2↑(𝑆 − 1))))
95 2cn 12228 . . . . . . . . . . . . . . 15 2 ∈ ℂ
96 expm1t 13996 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑆 ∈ ℕ) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9795, 63, 96sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2↑𝑆) = ((2↑(𝑆 − 1)) · 2))
9856, 97breqtrd 5131 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑁 < ((2↑(𝑆 − 1)) · 2))
9943, 41, 92ltdivmuld 13008 . . . . . . . . . . . . 13 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑁 / (2↑(𝑆 − 1))) < 2 ↔ 𝑁 < ((2↑(𝑆 − 1)) · 2)))
10098, 99mpbird 256 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < 2)
101 df-2 12216 . . . . . . . . . . . 12 2 = (1 + 1)
102100, 101breqtrdi 5146 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))
10343, 92rerpdivcld 12988 . . . . . . . . . . . 12 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑁 / (2↑(𝑆 − 1))) ∈ ℝ)
104 flbi 13721 . . . . . . . . . . . 12 (((𝑁 / (2↑(𝑆 − 1))) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
105103, 89, 104sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1 ↔ (1 ≤ (𝑁 / (2↑(𝑆 − 1))) ∧ (𝑁 / (2↑(𝑆 − 1))) < (1 + 1))))
10694, 102, 105mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (⌊‘(𝑁 / (2↑(𝑆 − 1)))) = 1)
107106breq2d 5117 . . . . . . . . 9 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))) ↔ 2 ∥ 1))
10811, 107mtbiri 326 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1)))))
1091nn0zd 12525 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
110 bitsval2 16305 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑆 − 1) ∈ ℕ0) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
111109, 65, 110syl2an2r 683 . . . . . . . 8 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ((𝑆 − 1) ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑(𝑆 − 1))))))
112108, 111mpbird 256 . . . . . . 7 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (bits‘𝑁))
11310, 112sseldd 3945 . . . . . 6 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) ∈ (0..^𝑀))
114 elfzolt2 13581 . . . . . 6 ((𝑆 − 1) ∈ (0..^𝑀) → (𝑆 − 1) < 𝑀)
115113, 114syl 17 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆 − 1) < 𝑀)
116 zlem1lt 12555 . . . . . 6 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
11732, 36, 116syl2an2r 683 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑆𝑀 ↔ (𝑆 − 1) < 𝑀))
118115, 117mpbird 256 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → 𝑆𝑀)
11937, 38ltnled 11302 . . . . 5 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → (𝑀 < 𝑆 ↔ ¬ 𝑆𝑀))
12060, 119mpbid 231 . . . 4 ((𝜑 ∧ (2↑𝑀) ≤ 𝑁) → ¬ 𝑆𝑀)
121118, 120pm2.65da 815 . . 3 (𝜑 → ¬ (2↑𝑀) ≤ 𝑁)
1227nnred 12168 . . . 4 (𝜑 → (2↑𝑀) ∈ ℝ)
12317, 122ltnled 11302 . . 3 (𝜑 → (𝑁 < (2↑𝑀) ↔ ¬ (2↑𝑀) ≤ 𝑁))
124121, 123mpbird 256 . 2 (𝜑𝑁 < (2↑𝑀))
125 elfzo2 13575 . 2 (𝑁 ∈ (0..^(2↑𝑀)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑀) ∈ ℤ ∧ 𝑁 < (2↑𝑀)))
1263, 8, 124, 125syl3anbrc 1343 1 (𝜑𝑁 ∈ (0..^(2↑𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ..^cfzo 13567  cfl 13695  cexp 13967  cdvds 16136  bitscbits 16299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-dvds 16137  df-bits 16302
This theorem is referenced by:  bitsfzo  16315
  Copyright terms: Public domain W3C validator