| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. 2
⊢ (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
| 2 | | ramub1.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | 2 | nnnn0d 12589 |
. 2
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | ramub1.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 5 | | ramub1.f |
. . 3
⊢ (𝜑 → 𝐹:𝑅⟶ℕ) |
| 6 | | nnssnn0 12531 |
. . 3
⊢ ℕ
⊆ ℕ0 |
| 7 | | fss 6751 |
. . 3
⊢ ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆
ℕ0) → 𝐹:𝑅⟶ℕ0) |
| 8 | 5, 6, 7 | sylancl 586 |
. 2
⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) |
| 9 | | ramub1.2 |
. . 3
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
| 10 | | peano2nn0 12568 |
. . 3
⊢ (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0
→ (((𝑀 − 1)
Ramsey 𝐺) + 1) ∈
ℕ0) |
| 11 | 9, 10 | syl 17 |
. 2
⊢ (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈
ℕ0) |
| 12 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
| 13 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
| 14 | | nn0p1nn 12567 |
. . . . . . 7
⊢ (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0
→ (((𝑀 − 1)
Ramsey 𝐺) + 1) ∈
ℕ) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ) |
| 16 | 12, 15 | eqeltrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ) |
| 17 | 16 | nnnn0d 12589 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈
ℕ0) |
| 18 | | hashclb 14398 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∈ Fin ↔
(♯‘𝑠) ∈
ℕ0)) |
| 19 | 18 | elv 3484 |
. . . . . . 7
⊢ (𝑠 ∈ Fin ↔
(♯‘𝑠) ∈
ℕ0) |
| 20 | 17, 19 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin) |
| 21 | | hashnncl 14406 |
. . . . . 6
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) ∈
ℕ ↔ 𝑠 ≠
∅)) |
| 22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅)) |
| 23 | 16, 22 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅) |
| 24 | | n0 4352 |
. . . 4
⊢ (𝑠 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑠) |
| 25 | 23, 24 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤 ∈ 𝑠) |
| 26 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑀 ∈ ℕ) |
| 27 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑅 ∈ Fin) |
| 28 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝐹:𝑅⟶ℕ) |
| 29 | | ramub1.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) |
| 30 | | ramub1.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝐺:𝑅⟶ℕ0) |
| 32 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
| 33 | 20 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑠 ∈ Fin) |
| 34 | | simprll 778 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
| 35 | | simprlr 779 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) |
| 36 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑤 ∈ 𝑠) |
| 37 | | uneq1 4160 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤})) |
| 38 | 37 | fveq2d 6909 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤}))) |
| 39 | 38 | cbvmptv 5254 |
. . . . . 6
⊢ (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤}))) |
| 40 | 26, 27, 28, 29, 31, 32, 1, 33, 34, 35, 36, 39 | ramub1lem2 17066 |
. . . . 5
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
| 41 | 40 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤 ∈ 𝑠 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 42 | 41 | exlimdv 1932 |
. . 3
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤 ∈ 𝑠 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
| 43 | 25, 42 | mpd 15 |
. 2
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
| 44 | 1, 3, 4, 8, 11, 43 | ramub2 17053 |
1
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1)) |