MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Structured version   Visualization version   GIF version

Theorem ramub1 17048
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
Assertion
Ref Expression
ramub1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ramub1
Dummy variables 𝑢 𝑐 𝑓 𝑠 𝑣 𝑤 𝑧 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramub1.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12562 . 2 (𝜑𝑀 ∈ ℕ0)
4 ramub1.r . 2 (𝜑𝑅 ∈ Fin)
5 ramub1.f . . 3 (𝜑𝐹:𝑅⟶ℕ)
6 nnssnn0 12504 . . 3 ℕ ⊆ ℕ0
7 fss 6722 . . 3 ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆ ℕ0) → 𝐹:𝑅⟶ℕ0)
85, 6, 7sylancl 586 . 2 (𝜑𝐹:𝑅⟶ℕ0)
9 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
10 peano2nn0 12541 . . 3 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
119, 10syl 17 . 2 (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
12 simprl 770 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
139adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
14 nn0p1nn 12540 . . . . . . 7 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1612, 15eqeltrd 2834 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ)
1716nnnn0d 12562 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ0)
18 hashclb 14376 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0))
1918elv 3464 . . . . . . 7 (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0)
2017, 19sylibr 234 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin)
21 hashnncl 14384 . . . . . 6 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2220, 21syl 17 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2316, 22mpbid 232 . . . 4 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅)
24 n0 4328 . . . 4 (𝑠 ≠ ∅ ↔ ∃𝑤 𝑤𝑠)
2523, 24sylib 218 . . 3 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤𝑠)
262adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑀 ∈ ℕ)
274adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑅 ∈ Fin)
285adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐹:𝑅⟶ℕ)
29 ramub1.g . . . . . 6 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
30 ramub1.1 . . . . . . 7 (𝜑𝐺:𝑅⟶ℕ0)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐺:𝑅⟶ℕ0)
329adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
3320adantrr 717 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑠 ∈ Fin)
34 simprll 778 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
35 simprlr 779 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)
36 simprr 772 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑤𝑠)
37 uneq1 4136 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤}))
3837fveq2d 6880 . . . . . . 7 (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤})))
3938cbvmptv 5225 . . . . . 6 (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤})))
4026, 27, 28, 29, 31, 32, 1, 33, 34, 35, 36, 39ramub1lem2 17047 . . . . 5 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
4140expr 456 . . . 4 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4241exlimdv 1933 . . 3 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4325, 42mpd 15 . 2 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
441, 3, 4, 8, 11, 43ramub2 17034 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308  ifcif 4500  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  1c1 11130   + caddc 11132  cle 11270  cmin 11466  cn 12240  0cn0 12501  chash 14348   Ramsey cram 17019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-ram 17021
This theorem is referenced by:  ramcl  17049
  Copyright terms: Public domain W3C validator