MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Structured version   Visualization version   GIF version

Theorem ramub1 16940
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
Assertion
Ref Expression
ramub1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ramub1
Dummy variables 𝑢 𝑐 𝑓 𝑠 𝑣 𝑤 𝑧 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramub1.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12442 . 2 (𝜑𝑀 ∈ ℕ0)
4 ramub1.r . 2 (𝜑𝑅 ∈ Fin)
5 ramub1.f . . 3 (𝜑𝐹:𝑅⟶ℕ)
6 nnssnn0 12384 . . 3 ℕ ⊆ ℕ0
7 fss 6667 . . 3 ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆ ℕ0) → 𝐹:𝑅⟶ℕ0)
85, 6, 7sylancl 586 . 2 (𝜑𝐹:𝑅⟶ℕ0)
9 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
10 peano2nn0 12421 . . 3 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
119, 10syl 17 . 2 (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
12 simprl 770 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
139adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
14 nn0p1nn 12420 . . . . . . 7 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1612, 15eqeltrd 2831 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ)
1716nnnn0d 12442 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ0)
18 hashclb 14265 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0))
1918elv 3441 . . . . . . 7 (𝑠 ∈ Fin ↔ (♯‘𝑠) ∈ ℕ0)
2017, 19sylibr 234 . . . . . 6 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin)
21 hashnncl 14273 . . . . . 6 (𝑠 ∈ Fin → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2220, 21syl 17 . . . . 5 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2316, 22mpbid 232 . . . 4 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅)
24 n0 4300 . . . 4 (𝑠 ≠ ∅ ↔ ∃𝑤 𝑤𝑠)
2523, 24sylib 218 . . 3 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤𝑠)
262adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑀 ∈ ℕ)
274adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑅 ∈ Fin)
285adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐹:𝑅⟶ℕ)
29 ramub1.g . . . . . 6 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
30 ramub1.1 . . . . . . 7 (𝜑𝐺:𝑅⟶ℕ0)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐺:𝑅⟶ℕ0)
329adantr 480 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
3320adantrr 717 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑠 ∈ Fin)
34 simprll 778 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
35 simprlr 779 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)
36 simprr 772 . . . . . 6 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑤𝑠)
37 uneq1 4108 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤}))
3837fveq2d 6826 . . . . . . 7 (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤})))
3938cbvmptv 5193 . . . . . 6 (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤})))
4026, 27, 28, 29, 31, 32, 1, 33, 34, 35, 36, 39ramub1lem2 16939 . . . . 5 ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
4140expr 456 . . . 4 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4241exlimdv 1934 . . 3 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4325, 42mpd 15 . 2 ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
441, 3, 4, 8, 11, 43ramub2 16926 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4280  ifcif 4472  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  1c1 11007   + caddc 11009  cle 11147  cmin 11344  cn 12125  0cn0 12381  chash 14237   Ramsey cram 16911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-ram 16913
This theorem is referenced by:  ramcl  16941
  Copyright terms: Public domain W3C validator