Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. 2
β’ (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π}) = (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π}) |
2 | | ramub1.m |
. . 3
β’ (π β π β β) |
3 | 2 | nnnn0d 12528 |
. 2
β’ (π β π β
β0) |
4 | | ramub1.r |
. 2
β’ (π β π
β Fin) |
5 | | ramub1.f |
. . 3
β’ (π β πΉ:π
βΆβ) |
6 | | nnssnn0 12471 |
. . 3
β’ β
β β0 |
7 | | fss 6731 |
. . 3
β’ ((πΉ:π
βΆβ β§ β β
β0) β πΉ:π
βΆβ0) |
8 | 5, 6, 7 | sylancl 586 |
. 2
β’ (π β πΉ:π
βΆβ0) |
9 | | ramub1.2 |
. . 3
β’ (π β ((π β 1) Ramsey πΊ) β
β0) |
10 | | peano2nn0 12508 |
. . 3
β’ (((π β 1) Ramsey πΊ) β β0
β (((π β 1)
Ramsey πΊ) + 1) β
β0) |
11 | 9, 10 | syl 17 |
. 2
β’ (π β (((π β 1) Ramsey πΊ) + 1) β
β0) |
12 | | simprl 769 |
. . . . . 6
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (β―βπ ) = (((π β 1) Ramsey πΊ) + 1)) |
13 | 9 | adantr 481 |
. . . . . . 7
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β ((π β 1) Ramsey πΊ) β
β0) |
14 | | nn0p1nn 12507 |
. . . . . . 7
β’ (((π β 1) Ramsey πΊ) β β0
β (((π β 1)
Ramsey πΊ) + 1) β
β) |
15 | 13, 14 | syl 17 |
. . . . . 6
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (((π β 1) Ramsey πΊ) + 1) β β) |
16 | 12, 15 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (β―βπ ) β β) |
17 | 16 | nnnn0d 12528 |
. . . . . . 7
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (β―βπ ) β
β0) |
18 | | hashclb 14314 |
. . . . . . . 8
β’ (π β V β (π β Fin β
(β―βπ ) β
β0)) |
19 | 18 | elv 3480 |
. . . . . . 7
β’ (π β Fin β
(β―βπ ) β
β0) |
20 | 17, 19 | sylibr 233 |
. . . . . 6
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β π β Fin) |
21 | | hashnncl 14322 |
. . . . . 6
β’ (π β Fin β
((β―βπ ) β
β β π β
β
)) |
22 | 20, 21 | syl 17 |
. . . . 5
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β ((β―βπ ) β β β π β β
)) |
23 | 16, 22 | mpbid 231 |
. . . 4
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β π β β
) |
24 | | n0 4345 |
. . . 4
β’ (π β β
β
βπ€ π€ β π ) |
25 | 23, 24 | sylib 217 |
. . 3
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β βπ€ π€ β π ) |
26 | 2 | adantr 481 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β π β β) |
27 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β π
β Fin) |
28 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β πΉ:π
βΆβ) |
29 | | ramub1.g |
. . . . . 6
β’ πΊ = (π₯ β π
β¦ (π Ramsey (π¦ β π
β¦ if(π¦ = π₯, ((πΉβπ₯) β 1), (πΉβπ¦))))) |
30 | | ramub1.1 |
. . . . . . 7
β’ (π β πΊ:π
βΆβ0) |
31 | 30 | adantr 481 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β πΊ:π
βΆβ0) |
32 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β ((π β 1) Ramsey πΊ) β
β0) |
33 | 20 | adantrr 715 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β π β Fin) |
34 | | simprll 777 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β (β―βπ ) = (((π β 1) Ramsey πΊ) + 1)) |
35 | | simprlr 778 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) |
36 | | simprr 771 |
. . . . . 6
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β π€ β π ) |
37 | | uneq1 4155 |
. . . . . . . 8
β’ (π£ = π’ β (π£ βͺ {π€}) = (π’ βͺ {π€})) |
38 | 37 | fveq2d 6892 |
. . . . . . 7
β’ (π£ = π’ β (πβ(π£ βͺ {π€})) = (πβ(π’ βͺ {π€}))) |
39 | 38 | cbvmptv 5260 |
. . . . . 6
β’ (π£ β ((π β {π€})(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})(π β 1)) β¦ (πβ(π£ βͺ {π€}))) = (π’ β ((π β {π€})(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})(π β 1)) β¦ (πβ(π’ βͺ {π€}))) |
40 | 26, 27, 28, 29, 31, 32, 1, 33, 34, 35, 36, 39 | ramub1lem2 16956 |
. . . . 5
β’ ((π β§ (((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
) β§ π€ β π )) β βπ β π
βπ§ β π« π ((πΉβπ) β€ (β―βπ§) β§ (π§(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π) β (β‘π β {π}))) |
41 | 40 | expr 457 |
. . . 4
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (π€ β π β βπ β π
βπ§ β π« π ((πΉβπ) β€ (β―βπ§) β§ (π§(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π) β (β‘π β {π})))) |
42 | 41 | exlimdv 1936 |
. . 3
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β (βπ€ π€ β π β βπ β π
βπ§ β π« π ((πΉβπ) β€ (β―βπ§) β§ (π§(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π) β (β‘π β {π})))) |
43 | 25, 42 | mpd 15 |
. 2
β’ ((π β§ ((β―βπ ) = (((π β 1) Ramsey πΊ) + 1) β§ π:(π (π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π)βΆπ
)) β βπ β π
βπ§ β π« π ((πΉβπ) β€ (β―βπ§) β§ (π§(π β V, π β β0 β¦ {π β π« π β£ (β―βπ) = π})π) β (β‘π β {π}))) |
44 | 1, 3, 4, 8, 11, 43 | ramub2 16943 |
1
β’ (π β (π Ramsey πΉ) β€ (((π β 1) Ramsey πΊ) + 1)) |