Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢ (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
2 | | ramub1.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | 2 | nnnn0d 12293 |
. 2
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
4 | | ramub1.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Fin) |
5 | | ramub1.f |
. . 3
⊢ (𝜑 → 𝐹:𝑅⟶ℕ) |
6 | | nnssnn0 12236 |
. . 3
⊢ ℕ
⊆ ℕ0 |
7 | | fss 6617 |
. . 3
⊢ ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆
ℕ0) → 𝐹:𝑅⟶ℕ0) |
8 | 5, 6, 7 | sylancl 586 |
. 2
⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) |
9 | | ramub1.2 |
. . 3
⊢ (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
10 | | peano2nn0 12273 |
. . 3
⊢ (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0
→ (((𝑀 − 1)
Ramsey 𝐺) + 1) ∈
ℕ0) |
11 | 9, 10 | syl 17 |
. 2
⊢ (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈
ℕ0) |
12 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
13 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
14 | | nn0p1nn 12272 |
. . . . . . 7
⊢ (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0
→ (((𝑀 − 1)
Ramsey 𝐺) + 1) ∈
ℕ) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ) |
16 | 12, 15 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈ ℕ) |
17 | 16 | nnnn0d 12293 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (♯‘𝑠) ∈
ℕ0) |
18 | | hashclb 14073 |
. . . . . . . 8
⊢ (𝑠 ∈ V → (𝑠 ∈ Fin ↔
(♯‘𝑠) ∈
ℕ0)) |
19 | 18 | elv 3438 |
. . . . . . 7
⊢ (𝑠 ∈ Fin ↔
(♯‘𝑠) ∈
ℕ0) |
20 | 17, 19 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin) |
21 | | hashnncl 14081 |
. . . . . 6
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) ∈
ℕ ↔ 𝑠 ≠
∅)) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((♯‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅)) |
23 | 16, 22 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅) |
24 | | n0 4280 |
. . . 4
⊢ (𝑠 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑠) |
25 | 23, 24 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤 ∈ 𝑠) |
26 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑀 ∈ ℕ) |
27 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑅 ∈ Fin) |
28 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝐹:𝑅⟶ℕ) |
29 | | ramub1.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ 𝑅 ↦ (𝑀 Ramsey (𝑦 ∈ 𝑅 ↦ if(𝑦 = 𝑥, ((𝐹‘𝑥) − 1), (𝐹‘𝑦))))) |
30 | | ramub1.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑅⟶ℕ0) |
31 | 30 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝐺:𝑅⟶ℕ0) |
32 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈
ℕ0) |
33 | 20 | adantrr 714 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑠 ∈ Fin) |
34 | | simprll 776 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → (♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1)) |
35 | | simprlr 777 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) |
36 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → 𝑤 ∈ 𝑠) |
37 | | uneq1 4090 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤})) |
38 | 37 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤}))) |
39 | 38 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤}))) |
40 | 26, 27, 28, 29, 31, 32, 1, 33, 34, 35, 36, 39 | ramub1lem2 16728 |
. . . . 5
⊢ ((𝜑 ∧ (((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤 ∈ 𝑠)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
41 | 40 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤 ∈ 𝑠 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
42 | 41 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤 ∈ 𝑠 → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐})))) |
43 | 25, 42 | mpd 15 |
. 2
⊢ ((𝜑 ∧ ((♯‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐 ∈ 𝑅 ∃𝑧 ∈ 𝒫 𝑠((𝐹‘𝑐) ≤ (♯‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})𝑀) ⊆ (◡𝑓 “ {𝑐}))) |
44 | 1, 3, 4, 8, 11, 43 | ramub2 16715 |
1
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1)) |