Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumcubes Structured version   Visualization version   GIF version

Theorem sumcubes 41211
Description: The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
Assertion
Ref Expression
sumcubes (𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)(π‘˜β†‘3) = (Ξ£π‘˜ ∈ (1...𝑁)π‘˜β†‘2))
Distinct variable group:   π‘˜,𝑁

Proof of Theorem sumcubes
Dummy variables 𝑙 π‘š π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7416 . . . . 5 (π‘₯ = 0 β†’ (1...π‘₯) = (1...0))
21sumeq1d 15646 . . . 4 (π‘₯ = 0 β†’ Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ (1...0)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)))
31sumeq1d 15646 . . . . . 6 (π‘₯ = 0 β†’ Ξ£π‘˜ ∈ (1...π‘₯)π‘˜ = Ξ£π‘˜ ∈ (1...0)π‘˜)
43oveq2d 7424 . . . . 5 (π‘₯ = 0 β†’ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜) = (1...Ξ£π‘˜ ∈ (1...0)π‘˜))
54sumeq1d 15646 . . . 4 (π‘₯ = 0 β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...0)π‘˜)((2 Β· π‘š) βˆ’ 1))
62, 5eqeq12d 2748 . . 3 (π‘₯ = 0 β†’ (Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) ↔ Ξ£π‘˜ ∈ (1...0)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...0)π‘˜)((2 Β· π‘š) βˆ’ 1)))
7 oveq2 7416 . . . . 5 (π‘₯ = 𝑦 β†’ (1...π‘₯) = (1...𝑦))
87sumeq1d 15646 . . . 4 (π‘₯ = 𝑦 β†’ Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)))
97sumeq1d 15646 . . . . . 6 (π‘₯ = 𝑦 β†’ Ξ£π‘˜ ∈ (1...π‘₯)π‘˜ = Ξ£π‘˜ ∈ (1...𝑦)π‘˜)
109oveq2d 7424 . . . . 5 (π‘₯ = 𝑦 β†’ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜) = (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜))
1110sumeq1d 15646 . . . 4 (π‘₯ = 𝑦 β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1))
128, 11eqeq12d 2748 . . 3 (π‘₯ = 𝑦 β†’ (Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) ↔ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)))
13 oveq2 7416 . . . . 5 (π‘₯ = (𝑦 + 1) β†’ (1...π‘₯) = (1...(𝑦 + 1)))
1413sumeq1d 15646 . . . 4 (π‘₯ = (𝑦 + 1) β†’ Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)))
1513sumeq1d 15646 . . . . . 6 (π‘₯ = (𝑦 + 1) β†’ Ξ£π‘˜ ∈ (1...π‘₯)π‘˜ = Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)
1615oveq2d 7424 . . . . 5 (π‘₯ = (𝑦 + 1) β†’ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜) = (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜))
1716sumeq1d 15646 . . . 4 (π‘₯ = (𝑦 + 1) β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1))
1814, 17eqeq12d 2748 . . 3 (π‘₯ = (𝑦 + 1) β†’ (Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) ↔ Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1)))
19 oveq2 7416 . . . . 5 (π‘₯ = 𝑁 β†’ (1...π‘₯) = (1...𝑁))
2019sumeq1d 15646 . . . 4 (π‘₯ = 𝑁 β†’ Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ (1...𝑁)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)))
2119sumeq1d 15646 . . . . . 6 (π‘₯ = 𝑁 β†’ Ξ£π‘˜ ∈ (1...π‘₯)π‘˜ = Ξ£π‘˜ ∈ (1...𝑁)π‘˜)
2221oveq2d 7424 . . . . 5 (π‘₯ = 𝑁 β†’ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜) = (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜))
2322sumeq1d 15646 . . . 4 (π‘₯ = 𝑁 β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜)((2 Β· π‘š) βˆ’ 1))
2420, 23eqeq12d 2748 . . 3 (π‘₯ = 𝑁 β†’ (Ξ£π‘˜ ∈ (1...π‘₯)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...π‘₯)π‘˜)((2 Β· π‘š) βˆ’ 1) ↔ Ξ£π‘˜ ∈ (1...𝑁)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜)((2 Β· π‘š) βˆ’ 1)))
25 sum0 15666 . . . . 5 Ξ£π‘˜ ∈ βˆ… Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = 0
26 sum0 15666 . . . . 5 Ξ£π‘š ∈ βˆ… ((2 Β· π‘š) βˆ’ 1) = 0
2725, 26eqtr4i 2763 . . . 4 Ξ£π‘˜ ∈ βˆ… Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ βˆ… ((2 Β· π‘š) βˆ’ 1)
28 fz10 13521 . . . . 5 (1...0) = βˆ…
2928sumeq1i 15643 . . . 4 Ξ£π‘˜ ∈ (1...0)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ βˆ… Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1))
3028sumeq1i 15643 . . . . . . . 8 Ξ£π‘˜ ∈ (1...0)π‘˜ = Ξ£π‘˜ ∈ βˆ… π‘˜
31 sum0 15666 . . . . . . . 8 Ξ£π‘˜ ∈ βˆ… π‘˜ = 0
3230, 31eqtri 2760 . . . . . . 7 Ξ£π‘˜ ∈ (1...0)π‘˜ = 0
3332oveq2i 7419 . . . . . 6 (1...Ξ£π‘˜ ∈ (1...0)π‘˜) = (1...0)
3433, 28eqtri 2760 . . . . 5 (1...Ξ£π‘˜ ∈ (1...0)π‘˜) = βˆ…
3534sumeq1i 15643 . . . 4 Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...0)π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ βˆ… ((2 Β· π‘š) βˆ’ 1)
3627, 29, 353eqtr4i 2770 . . 3 Ξ£π‘˜ ∈ (1...0)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...0)π‘˜)((2 Β· π‘š) βˆ’ 1)
37 simpr 485 . . . . . 6 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1))
38 fzfid 13937 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ (1...𝑦) ∈ Fin)
39 elfznn 13529 . . . . . . . . . . . . 13 (π‘˜ ∈ (1...𝑦) β†’ π‘˜ ∈ β„•)
4039adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑦)) β†’ π‘˜ ∈ β„•)
4140nnnn0d 12531 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑦)) β†’ π‘˜ ∈ β„•0)
4238, 41fsumnn0cl 15681 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ β„•0)
4342nn0zd 12583 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ β„€)
44 nn0p1nn 12510 . . . . . . . . . . 11 (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) ∈ β„•)
4542, 44syl 17 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) ∈ β„•)
4645nnzd 12584 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) ∈ β„€)
47 peano2nn0 12511 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ (𝑦 + 1) ∈ β„•0)
4847nn0zd 12583 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ (𝑦 + 1) ∈ β„€)
4943, 48zaddcld 12669 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) ∈ β„€)
50 2cnd 12289 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ 2 ∈ β„‚)
51 elfzelz 13500 . . . . . . . . . . . . 13 (π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) β†’ π‘š ∈ β„€)
5251zcnd 12666 . . . . . . . . . . . 12 (π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) β†’ π‘š ∈ β„‚)
5352adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ π‘š ∈ β„‚)
5450, 53mulcld 11233 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ (2 Β· π‘š) ∈ β„‚)
55 1cnd 11208 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ 1 ∈ β„‚)
5654, 55subcld 11570 . . . . . . . . 9 ((𝑦 ∈ β„•0 ∧ π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ ((2 Β· π‘š) βˆ’ 1) ∈ β„‚)
57 oveq2 7416 . . . . . . . . . 10 (π‘š = (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜) β†’ (2 Β· π‘š) = (2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)))
5857oveq1d 7423 . . . . . . . . 9 (π‘š = (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜) β†’ ((2 Β· π‘š) βˆ’ 1) = ((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1))
5943, 46, 49, 56, 58fsumshftm 15726 . . . . . . . 8 (𝑦 ∈ β„•0 β†’ Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1) = Σ𝑙 ∈ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜))((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1))
60 elfzelz 13500 . . . . . . . . . . . . . . 15 (π‘˜ ∈ (1...𝑦) β†’ π‘˜ ∈ β„€)
6160adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑦)) β†’ π‘˜ ∈ β„€)
6261zred 12665 . . . . . . . . . . . . 13 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑦)) β†’ π‘˜ ∈ ℝ)
6338, 62fsumrecl 15679 . . . . . . . . . . . 12 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ ℝ)
6463recnd 11241 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ β„‚)
65 1cnd 11208 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ 1 ∈ β„‚)
6664, 65pncan2d 11572 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜) = 1)
6747nn0cnd 12533 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ (𝑦 + 1) ∈ β„‚)
6864, 67pncan2d 11572 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜) = (𝑦 + 1))
6966, 68oveq12d 7426 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) = (1...(𝑦 + 1)))
70 elfzelz 13500 . . . . . . . . . . 11 (𝑙 ∈ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) β†’ 𝑙 ∈ β„€)
7170zcnd 12666 . . . . . . . . . 10 (𝑙 ∈ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) β†’ 𝑙 ∈ β„‚)
72 2cnd 12289 . . . . . . . . . . . . 13 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ 2 ∈ β„‚)
73 simpr 485 . . . . . . . . . . . . 13 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ 𝑙 ∈ β„‚)
7464adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ β„‚)
7572, 73, 74adddid 11237 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ (2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) = ((2 Β· 𝑙) + (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜)))
7675oveq1d 7423 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ ((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1) = (((2 Β· 𝑙) + (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1))
7772, 73mulcld 11233 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ (2 Β· 𝑙) ∈ β„‚)
7872, 74mulcld 11233 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) ∈ β„‚)
79 1cnd 11208 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ 1 ∈ β„‚)
8077, 78, 79addsubassd 11590 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ (((2 Β· 𝑙) + (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1) = ((2 Β· 𝑙) + ((2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) βˆ’ 1)))
8177, 78, 79addsub12d 11593 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ ((2 Β· 𝑙) + ((2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) βˆ’ 1)) = ((2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) + ((2 Β· 𝑙) βˆ’ 1)))
82 arisum 15805 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ = (((𝑦↑2) + 𝑦) / 2))
8382oveq2d 7424 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„•0 β†’ (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) = (2 Β· (((𝑦↑2) + 𝑦) / 2)))
84 nn0cn 12481 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ β„•0 β†’ 𝑦 ∈ β„‚)
8584sqcld 14108 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ β„•0 β†’ (𝑦↑2) ∈ β„‚)
8685, 84addcld 11232 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ ((𝑦↑2) + 𝑦) ∈ β„‚)
87 2cnd 12289 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ 2 ∈ β„‚)
88 2ne0 12315 . . . . . . . . . . . . . . . . 17 2 β‰  0
8988a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ 2 β‰  0)
9086, 87, 89divcan2d 11991 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„•0 β†’ (2 Β· (((𝑦↑2) + 𝑦) / 2)) = ((𝑦↑2) + 𝑦))
91 binom21 14181 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ β„‚ β†’ ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 Β· 𝑦)) + 1))
9284, 91syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ β„•0 β†’ ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 Β· 𝑦)) + 1))
9392oveq1d 7423 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ (((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) = ((((𝑦↑2) + (2 Β· 𝑦)) + 1) βˆ’ (𝑦 + 1)))
9487, 84mulcld 11233 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ β„•0 β†’ (2 Β· 𝑦) ∈ β„‚)
9585, 94addcld 11232 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ β„•0 β†’ ((𝑦↑2) + (2 Β· 𝑦)) ∈ β„‚)
9695, 84, 65pnpcan2d 11608 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ ((((𝑦↑2) + (2 Β· 𝑦)) + 1) βˆ’ (𝑦 + 1)) = (((𝑦↑2) + (2 Β· 𝑦)) βˆ’ 𝑦))
9785, 94, 84addsubassd 11590 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ β„•0 β†’ (((𝑦↑2) + (2 Β· 𝑦)) βˆ’ 𝑦) = ((𝑦↑2) + ((2 Β· 𝑦) βˆ’ 𝑦)))
98842timesd 12454 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ β„•0 β†’ (2 Β· 𝑦) = (𝑦 + 𝑦))
9984, 84, 98mvrladdd 11626 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ β„•0 β†’ ((2 Β· 𝑦) βˆ’ 𝑦) = 𝑦)
10099oveq2d 7424 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ β„•0 β†’ ((𝑦↑2) + ((2 Β· 𝑦) βˆ’ 𝑦)) = ((𝑦↑2) + 𝑦))
10197, 100eqtrd 2772 . . . . . . . . . . . . . . . 16 (𝑦 ∈ β„•0 β†’ (((𝑦↑2) + (2 Β· 𝑦)) βˆ’ 𝑦) = ((𝑦↑2) + 𝑦))
10293, 96, 1013eqtrrd 2777 . . . . . . . . . . . . . . 15 (𝑦 ∈ β„•0 β†’ ((𝑦↑2) + 𝑦) = (((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)))
10383, 90, 1023eqtrd 2776 . . . . . . . . . . . . . 14 (𝑦 ∈ β„•0 β†’ (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) = (((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)))
104103adantr 481 . . . . . . . . . . . . 13 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ (2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) = (((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)))
105104oveq1d 7423 . . . . . . . . . . . 12 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ ((2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
10681, 105eqtrd 2772 . . . . . . . . . . 11 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ ((2 Β· 𝑙) + ((2 Β· Ξ£π‘˜ ∈ (1...𝑦)π‘˜) βˆ’ 1)) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
10776, 80, 1063eqtrd 2776 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ β„‚) β†’ ((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
10871, 107sylan2 593 . . . . . . . . 9 ((𝑦 ∈ β„•0 ∧ 𝑙 ∈ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜))) β†’ ((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
10969, 108sumeq12dv 15651 . . . . . . . 8 (𝑦 ∈ β„•0 β†’ Σ𝑙 ∈ (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜)...((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) βˆ’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜))((2 Β· (𝑙 + Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) βˆ’ 1) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
11059, 109eqtr2d 2773 . . . . . . 7 (𝑦 ∈ β„•0 β†’ Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1))
111110adantr 481 . . . . . 6 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1))
11237, 111oveq12d 7426 . . . . 5 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ (Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1))) = (Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1) + Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1)))
113 id 22 . . . . . . 7 (𝑦 ∈ β„•0 β†’ 𝑦 ∈ β„•0)
114 fzfid 13937 . . . . . . . 8 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...(𝑦 + 1))) β†’ (1...π‘˜) ∈ Fin)
115 elfzelz 13500 . . . . . . . . . . . . 13 (π‘˜ ∈ (1...(𝑦 + 1)) β†’ π‘˜ ∈ β„€)
116115zcnd 12666 . . . . . . . . . . . 12 (π‘˜ ∈ (1...(𝑦 + 1)) β†’ π‘˜ ∈ β„‚)
117116sqcld 14108 . . . . . . . . . . 11 (π‘˜ ∈ (1...(𝑦 + 1)) β†’ (π‘˜β†‘2) ∈ β„‚)
118117, 116subcld 11570 . . . . . . . . . 10 (π‘˜ ∈ (1...(𝑦 + 1)) β†’ ((π‘˜β†‘2) βˆ’ π‘˜) ∈ β„‚)
119 2cnd 12289 . . . . . . . . . . . 12 (𝑙 ∈ (1...π‘˜) β†’ 2 ∈ β„‚)
120 elfzelz 13500 . . . . . . . . . . . . 13 (𝑙 ∈ (1...π‘˜) β†’ 𝑙 ∈ β„€)
121120zcnd 12666 . . . . . . . . . . . 12 (𝑙 ∈ (1...π‘˜) β†’ 𝑙 ∈ β„‚)
122119, 121mulcld 11233 . . . . . . . . . . 11 (𝑙 ∈ (1...π‘˜) β†’ (2 Β· 𝑙) ∈ β„‚)
123 1cnd 11208 . . . . . . . . . . 11 (𝑙 ∈ (1...π‘˜) β†’ 1 ∈ β„‚)
124122, 123subcld 11570 . . . . . . . . . 10 (𝑙 ∈ (1...π‘˜) β†’ ((2 Β· 𝑙) βˆ’ 1) ∈ β„‚)
125 addcl 11191 . . . . . . . . . 10 ((((π‘˜β†‘2) βˆ’ π‘˜) ∈ β„‚ ∧ ((2 Β· 𝑙) βˆ’ 1) ∈ β„‚) β†’ (((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) ∈ β„‚)
126118, 124, 125syl2an 596 . . . . . . . . 9 ((π‘˜ ∈ (1...(𝑦 + 1)) ∧ 𝑙 ∈ (1...π‘˜)) β†’ (((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) ∈ β„‚)
127126adantll 712 . . . . . . . 8 (((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...(𝑦 + 1))) ∧ 𝑙 ∈ (1...π‘˜)) β†’ (((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) ∈ β„‚)
128114, 127fsumcl 15678 . . . . . . 7 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...(𝑦 + 1))) β†’ Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) ∈ β„‚)
129 oveq2 7416 . . . . . . . 8 (π‘˜ = (𝑦 + 1) β†’ (1...π‘˜) = (1...(𝑦 + 1)))
130 oveq1 7415 . . . . . . . . . . 11 (π‘˜ = (𝑦 + 1) β†’ (π‘˜β†‘2) = ((𝑦 + 1)↑2))
131 id 22 . . . . . . . . . . 11 (π‘˜ = (𝑦 + 1) β†’ π‘˜ = (𝑦 + 1))
132130, 131oveq12d 7426 . . . . . . . . . 10 (π‘˜ = (𝑦 + 1) β†’ ((π‘˜β†‘2) βˆ’ π‘˜) = (((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)))
133132oveq1d 7423 . . . . . . . . 9 (π‘˜ = (𝑦 + 1) β†’ (((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
134133adantr 481 . . . . . . . 8 ((π‘˜ = (𝑦 + 1) ∧ 𝑙 ∈ (1...π‘˜)) β†’ (((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = ((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
135129, 134sumeq12dv 15651 . . . . . . 7 (π‘˜ = (𝑦 + 1) β†’ Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1)))
136113, 128, 135fz1sump1 41208 . . . . . 6 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = (Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1))))
137136adantr 481 . . . . 5 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = (Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) βˆ’ (𝑦 + 1)) + ((2 Β· 𝑙) βˆ’ 1))))
138116adantl 482 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ π‘˜ ∈ (1...(𝑦 + 1))) β†’ π‘˜ ∈ β„‚)
139113, 138, 131fz1sump1 41208 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜ = (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))
140139adantr 481 . . . . . . . 8 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜ = (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))
141140oveq2d 7424 . . . . . . 7 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜) = (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))))
142141sumeq1d 15646 . . . . . 6 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1) = Ξ£π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1))
14363ltp1d 12143 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ < (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1))
144 fzdisj 13527 . . . . . . . . 9 (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ < (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) β†’ ((1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜) ∩ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) = βˆ…)
145143, 144syl 17 . . . . . . . 8 (𝑦 ∈ β„•0 β†’ ((1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜) ∩ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) = βˆ…)
146 nnuz 12864 . . . . . . . . . 10 β„• = (β„€β‰₯β€˜1)
14745, 146eleqtrdi 2843 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) ∈ (β„€β‰₯β€˜1))
14843uzidd 12837 . . . . . . . . . 10 (𝑦 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ (β„€β‰₯β€˜Ξ£π‘˜ ∈ (1...𝑦)π‘˜))
149 uzaddcl 12887 . . . . . . . . . 10 ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ ∈ (β„€β‰₯β€˜Ξ£π‘˜ ∈ (1...𝑦)π‘˜) ∧ (𝑦 + 1) ∈ β„•0) β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) ∈ (β„€β‰₯β€˜Ξ£π‘˜ ∈ (1...𝑦)π‘˜))
150148, 47, 149syl2anc 584 . . . . . . . . 9 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) ∈ (β„€β‰₯β€˜Ξ£π‘˜ ∈ (1...𝑦)π‘˜))
151 fzsplit2 13525 . . . . . . . . 9 (((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1) ∈ (β„€β‰₯β€˜1) ∧ (Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)) ∈ (β„€β‰₯β€˜Ξ£π‘˜ ∈ (1...𝑦)π‘˜)) β†’ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) = ((1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜) βˆͺ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))))
152147, 150, 151syl2anc 584 . . . . . . . 8 (𝑦 ∈ β„•0 β†’ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) = ((1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜) βˆͺ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))))
153 fzfid 13937 . . . . . . . 8 (𝑦 ∈ β„•0 β†’ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) ∈ Fin)
154 2cnd 12289 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ 2 ∈ β„‚)
155 elfzelz 13500 . . . . . . . . . . . 12 (π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) β†’ π‘š ∈ β„€)
156155zcnd 12666 . . . . . . . . . . 11 (π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1))) β†’ π‘š ∈ β„‚)
157156adantl 482 . . . . . . . . . 10 ((𝑦 ∈ β„•0 ∧ π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ π‘š ∈ β„‚)
158154, 157mulcld 11233 . . . . . . . . 9 ((𝑦 ∈ β„•0 ∧ π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ (2 Β· π‘š) ∈ β„‚)
159 1cnd 11208 . . . . . . . . 9 ((𝑦 ∈ β„•0 ∧ π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ 1 ∈ β„‚)
160158, 159subcld 11570 . . . . . . . 8 ((𝑦 ∈ β„•0 ∧ π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))) β†’ ((2 Β· π‘š) βˆ’ 1) ∈ β„‚)
161145, 152, 153, 160fsumsplit 15686 . . . . . . 7 (𝑦 ∈ β„•0 β†’ Ξ£π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1) = (Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1) + Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1)))
162161adantr 481 . . . . . 6 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘š ∈ (1...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1) = (Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1) + Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1)))
163142, 162eqtrd 2772 . . . . 5 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1) = (Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1) + Ξ£π‘š ∈ ((Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + 1)...(Ξ£π‘˜ ∈ (1...𝑦)π‘˜ + (𝑦 + 1)))((2 Β· π‘š) βˆ’ 1)))
164112, 137, 1633eqtr4d 2782 . . . 4 ((𝑦 ∈ β„•0 ∧ Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1)) β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1))
165164ex 413 . . 3 (𝑦 ∈ β„•0 β†’ (Ξ£π‘˜ ∈ (1...𝑦)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑦)π‘˜)((2 Β· π‘š) βˆ’ 1) β†’ Ξ£π‘˜ ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...(𝑦 + 1))π‘˜)((2 Β· π‘š) βˆ’ 1)))
1666, 12, 18, 24, 36, 165nn0ind 12656 . 2 (𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜)((2 Β· π‘š) βˆ’ 1))
167 fz1ssnn 13531 . . . . . . 7 (1...𝑁) βŠ† β„•
168 nnssnn0 12474 . . . . . . 7 β„• βŠ† β„•0
169167, 168sstri 3991 . . . . . 6 (1...𝑁) βŠ† β„•0
170169a1i 11 . . . . 5 (𝑁 ∈ β„•0 β†’ (1...𝑁) βŠ† β„•0)
171170sselda 3982 . . . 4 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑁)) β†’ π‘˜ ∈ β„•0)
172 nicomachus 41210 . . . 4 (π‘˜ ∈ β„•0 β†’ Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = (π‘˜β†‘3))
173171, 172syl 17 . . 3 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ (1...𝑁)) β†’ Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = (π‘˜β†‘3))
174173sumeq2dv 15648 . 2 (𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)Σ𝑙 ∈ (1...π‘˜)(((π‘˜β†‘2) βˆ’ π‘˜) + ((2 Β· 𝑙) βˆ’ 1)) = Ξ£π‘˜ ∈ (1...𝑁)(π‘˜β†‘3))
175 fzfid 13937 . . . 4 (𝑁 ∈ β„•0 β†’ (1...𝑁) ∈ Fin)
176175, 171fsumnn0cl 15681 . . 3 (𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)π‘˜ ∈ β„•0)
177 oddnumth 41209 . . 3 (Ξ£π‘˜ ∈ (1...𝑁)π‘˜ ∈ β„•0 β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜)((2 Β· π‘š) βˆ’ 1) = (Ξ£π‘˜ ∈ (1...𝑁)π‘˜β†‘2))
178176, 177syl 17 . 2 (𝑁 ∈ β„•0 β†’ Ξ£π‘š ∈ (1...Ξ£π‘˜ ∈ (1...𝑁)π‘˜)((2 Β· π‘š) βˆ’ 1) = (Ξ£π‘˜ ∈ (1...𝑁)π‘˜β†‘2))
179166, 174, 1783eqtr3d 2780 1 (𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)(π‘˜β†‘3) = (Ξ£π‘˜ ∈ (1...𝑁)π‘˜β†‘2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  β„‚cc 11107  0cc0 11109  1c1 11110   + caddc 11112   Β· cmul 11114   < clt 11247   βˆ’ cmin 11443   / cdiv 11870  β„•cn 12211  2c2 12266  3c3 12267  β„•0cn0 12471  β„€cz 12557  β„€β‰₯cuz 12821  ...cfz 13483  β†‘cexp 14026  Ξ£csu 15631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-fac 14233  df-bc 14262  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator