Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumcubes Structured version   Visualization version   GIF version

Theorem sumcubes 42301
Description: The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
Assertion
Ref Expression
sumcubes (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem sumcubes
Dummy variables 𝑙 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑥 = 0 → (1...𝑥) = (1...0))
21sumeq1d 15666 . . . 4 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
31sumeq1d 15666 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...0)𝑘)
43oveq2d 7403 . . . . 5 (𝑥 = 0 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...0)𝑘))
54sumeq1d 15666 . . . 4 (𝑥 = 0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1))
62, 5eqeq12d 2745 . . 3 (𝑥 = 0 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)))
7 oveq2 7395 . . . . 5 (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦))
87sumeq1d 15666 . . . 4 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
97sumeq1d 15666 . . . . . 6 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑦)𝑘)
109oveq2d 7403 . . . . 5 (𝑥 = 𝑦 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑦)𝑘))
1110sumeq1d 15666 . . . 4 (𝑥 = 𝑦 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
128, 11eqeq12d 2745 . . 3 (𝑥 = 𝑦 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)))
13 oveq2 7395 . . . . 5 (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1)))
1413sumeq1d 15666 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
1513sumeq1d 15666 . . . . . 6 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)
1615oveq2d 7403 . . . . 5 (𝑥 = (𝑦 + 1) → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘))
1716sumeq1d 15666 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
1814, 17eqeq12d 2745 . . 3 (𝑥 = (𝑦 + 1) → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
19 oveq2 7395 . . . . 5 (𝑥 = 𝑁 → (1...𝑥) = (1...𝑁))
2019sumeq1d 15666 . . . 4 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
2119sumeq1d 15666 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑁)𝑘)
2221oveq2d 7403 . . . . 5 (𝑥 = 𝑁 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑁)𝑘))
2322sumeq1d 15666 . . . 4 (𝑥 = 𝑁 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
2420, 23eqeq12d 2745 . . 3 (𝑥 = 𝑁 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1)))
25 sum0 15687 . . . . 5 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = 0
26 sum0 15687 . . . . 5 Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1) = 0
2725, 26eqtr4i 2755 . . . 4 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
28 fz10 13506 . . . . 5 (1...0) = ∅
2928sumeq1i 15663 . . . 4 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1))
3028sumeq1i 15663 . . . . . . . 8 Σ𝑘 ∈ (1...0)𝑘 = Σ𝑘 ∈ ∅ 𝑘
31 sum0 15687 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝑘 = 0
3230, 31eqtri 2752 . . . . . . 7 Σ𝑘 ∈ (1...0)𝑘 = 0
3332oveq2i 7398 . . . . . 6 (1...Σ𝑘 ∈ (1...0)𝑘) = (1...0)
3433, 28eqtri 2752 . . . . 5 (1...Σ𝑘 ∈ (1...0)𝑘) = ∅
3534sumeq1i 15663 . . . 4 Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
3627, 29, 353eqtr4i 2762 . . 3 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)
37 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
38 fzfid 13938 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (1...𝑦) ∈ Fin)
39 elfznn 13514 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
4039adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ)
4140nnnn0d 12503 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ0)
4238, 41fsumnn0cl 15702 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0)
4342nn0zd 12555 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℤ)
44 nn0p1nn 12481 . . . . . . . . . . 11 𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4542, 44syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4645nnzd 12556 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℤ)
47 peano2nn0 12482 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
4847nn0zd 12555 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℤ)
4943, 48zaddcld 12642 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ ℤ)
50 2cnd 12264 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
51 elfzelz 13485 . . . . . . . . . . . . 13 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
5251zcnd 12639 . . . . . . . . . . . 12 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
5352adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
5450, 53mulcld 11194 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
55 1cnd 11169 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
5654, 55subcld 11533 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
57 oveq2 7395 . . . . . . . . . 10 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → (2 · 𝑚) = (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)))
5857oveq1d 7402 . . . . . . . . 9 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → ((2 · 𝑚) − 1) = ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
5943, 46, 49, 56, 58fsumshftm 15747 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
60 elfzelz 13485 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℤ)
6261zred 12638 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℝ)
6338, 62fsumrecl 15700 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℝ)
6463recnd 11202 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
65 1cnd 11169 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
6664, 65pncan2d 11535 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘) = 1)
6747nn0cnd 12505 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℂ)
6864, 67pncan2d 11535 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘) = (𝑦 + 1))
6966, 68oveq12d 7405 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) = (1...(𝑦 + 1)))
70 elfzelz 13485 . . . . . . . . . . 11 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℤ)
7170zcnd 12639 . . . . . . . . . 10 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℂ)
72 2cnd 12264 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 2 ∈ ℂ)
73 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 𝑙 ∈ ℂ)
7464adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
7572, 73, 74adddid 11198 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) = ((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)))
7675oveq1d 7402 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
7772, 73mulcld 11194 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · 𝑙) ∈ ℂ)
7872, 74mulcld 11194 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) ∈ ℂ)
79 1cnd 11169 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11553 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)))
8177, 78, 79addsub12d 11556 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)))
82 arisum 15826 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 = (((𝑦↑2) + 𝑦) / 2))
8382oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (2 · (((𝑦↑2) + 𝑦) / 2)))
84 nn0cn 12452 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8584sqcld 14109 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
8685, 84addcld 11193 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) ∈ ℂ)
87 2cnd 12264 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
88 2ne0 12290 . . . . . . . . . . . . . . . . 17 2 ≠ 0
8988a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ≠ 0)
9086, 87, 89divcan2d 11960 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · (((𝑦↑2) + 𝑦) / 2)) = ((𝑦↑2) + 𝑦))
91 binom21 14184 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9284, 91syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9392oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦 + 1)↑2) − (𝑦 + 1)) = ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)))
9487, 84mulcld 11194 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (2 · 𝑦) ∈ ℂ)
9585, 94addcld 11193 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + (2 · 𝑦)) ∈ ℂ)
9695, 84, 65pnpcan2d 11571 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)) = (((𝑦↑2) + (2 · 𝑦)) − 𝑦))
9785, 94, 84addsubassd 11553 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + ((2 · 𝑦) − 𝑦)))
98842timesd 12425 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (𝑦 + 𝑦))
9984, 84, 98mvrladdd 11591 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((2 · 𝑦) − 𝑦) = 𝑦)
10099oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + ((2 · 𝑦) − 𝑦)) = ((𝑦↑2) + 𝑦))
10197, 100eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + 𝑦))
10293, 96, 1013eqtrrd 2769 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
10383, 90, 1023eqtrd 2768 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
104103adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
105104oveq1d 7402 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10681, 105eqtrd 2764 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10776, 80, 1063eqtrd 2768 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10871, 107sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10969, 108sumeq12dv 15672 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
11059, 109eqtr2d 2765 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
111110adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
11237, 111oveq12d 7405 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
113 id 22 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℕ0)
114 fzfid 13938 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → (1...𝑘) ∈ Fin)
115 elfzelz 13485 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℤ)
116115zcnd 12639 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℂ)
117116sqcld 14109 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑦 + 1)) → (𝑘↑2) ∈ ℂ)
118117, 116subcld 11533 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑦 + 1)) → ((𝑘↑2) − 𝑘) ∈ ℂ)
119 2cnd 12264 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 2 ∈ ℂ)
120 elfzelz 13485 . . . . . . . . . . . . 13 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℤ)
121120zcnd 12639 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℂ)
122119, 121mulcld 11194 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → (2 · 𝑙) ∈ ℂ)
123 1cnd 11169 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → 1 ∈ ℂ)
124122, 123subcld 11533 . . . . . . . . . 10 (𝑙 ∈ (1...𝑘) → ((2 · 𝑙) − 1) ∈ ℂ)
125 addcl 11150 . . . . . . . . . 10 ((((𝑘↑2) − 𝑘) ∈ ℂ ∧ ((2 · 𝑙) − 1) ∈ ℂ) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
126118, 124, 125syl2an 596 . . . . . . . . 9 ((𝑘 ∈ (1...(𝑦 + 1)) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
127126adantll 714 . . . . . . . 8 (((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
128114, 127fsumcl 15699 . . . . . . 7 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
129 oveq2 7395 . . . . . . . 8 (𝑘 = (𝑦 + 1) → (1...𝑘) = (1...(𝑦 + 1)))
130 oveq1 7394 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → (𝑘↑2) = ((𝑦 + 1)↑2))
131 id 22 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 𝑘 = (𝑦 + 1))
132130, 131oveq12d 7405 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → ((𝑘↑2) − 𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
133132oveq1d 7402 . . . . . . . . 9 (𝑘 = (𝑦 + 1) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
134133adantr 480 . . . . . . . 8 ((𝑘 = (𝑦 + 1) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
135129, 134sumeq12dv 15672 . . . . . . 7 (𝑘 = (𝑦 + 1) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
136113, 128, 135fz1sump1 42298 . . . . . 6 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
137136adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
138116adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → 𝑘 ∈ ℂ)
139113, 138, 131fz1sump1 42298 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
140139adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
141140oveq2d 7403 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘) = (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))))
142141sumeq1d 15666 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
14363ltp1d 12113 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1))
144 fzdisj 13512 . . . . . . . . 9 𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
145143, 144syl 17 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
146 nnuz 12836 . . . . . . . . . 10 ℕ = (ℤ‘1)
14745, 146eleqtrdi 2838 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1))
14843uzidd 12809 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
149 uzaddcl 12863 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘) ∧ (𝑦 + 1) ∈ ℕ0) → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
150148, 47, 149syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
151 fzsplit2 13510 . . . . . . . . 9 (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1) ∧ (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘)) → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
152147, 150, 151syl2anc 584 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
153 fzfid 13938 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) ∈ Fin)
154 2cnd 12264 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
155 elfzelz 13485 . . . . . . . . . . . 12 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
156155zcnd 12639 . . . . . . . . . . 11 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
157156adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
158154, 157mulcld 11194 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
159 1cnd 11169 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
160158, 159subcld 11533 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
161145, 152, 153, 160fsumsplit 15707 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
162161adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
163142, 162eqtrd 2764 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
164112, 137, 1633eqtr4d 2774 . . . 4 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
165164ex 412 . . 3 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
1666, 12, 18, 24, 36, 165nn0ind 12629 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
167 fz1ssnn 13516 . . . . . . 7 (1...𝑁) ⊆ ℕ
168 nnssnn0 12445 . . . . . . 7 ℕ ⊆ ℕ0
169167, 168sstri 3956 . . . . . 6 (1...𝑁) ⊆ ℕ0
170169a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ0)
171170sselda 3946 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
172 nicomachus 42300 . . . 4 (𝑘 ∈ ℕ0 → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
173171, 172syl 17 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
174173sumeq2dv 15668 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁)(𝑘↑3))
175 fzfid 13938 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
176175, 171fsumnn0cl 15702 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0)
177 oddnumth 42299 . . 3 𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
178176, 177syl 17 . 2 (𝑁 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
179166, 174, 1783eqtr3d 2772 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cun 3912  cin 3913  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cexp 14026  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  sum9cubes  42660
  Copyright terms: Public domain W3C validator