Step | Hyp | Ref
| Expression |
1 | | oveq2 7416 |
. . . . 5
β’ (π₯ = 0 β (1...π₯) = (1...0)) |
2 | 1 | sumeq1d 15646 |
. . . 4
β’ (π₯ = 0 β Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...0)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1))) |
3 | 1 | sumeq1d 15646 |
. . . . . 6
β’ (π₯ = 0 β Ξ£π β (1...π₯)π = Ξ£π β (1...0)π) |
4 | 3 | oveq2d 7424 |
. . . . 5
β’ (π₯ = 0 β (1...Ξ£π β (1...π₯)π) = (1...Ξ£π β (1...0)π)) |
5 | 4 | sumeq1d 15646 |
. . . 4
β’ (π₯ = 0 β Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) = Ξ£π β (1...Ξ£π β (1...0)π)((2 Β· π) β 1)) |
6 | 2, 5 | eqeq12d 2748 |
. . 3
β’ (π₯ = 0 β (Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) β Ξ£π β (1...0)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...0)π)((2 Β· π) β 1))) |
7 | | oveq2 7416 |
. . . . 5
β’ (π₯ = π¦ β (1...π₯) = (1...π¦)) |
8 | 7 | sumeq1d 15646 |
. . . 4
β’ (π₯ = π¦ β Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1))) |
9 | 7 | sumeq1d 15646 |
. . . . . 6
β’ (π₯ = π¦ β Ξ£π β (1...π₯)π = Ξ£π β (1...π¦)π) |
10 | 9 | oveq2d 7424 |
. . . . 5
β’ (π₯ = π¦ β (1...Ξ£π β (1...π₯)π) = (1...Ξ£π β (1...π¦)π)) |
11 | 10 | sumeq1d 15646 |
. . . 4
β’ (π₯ = π¦ β Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) |
12 | 8, 11 | eqeq12d 2748 |
. . 3
β’ (π₯ = π¦ β (Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) β Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1))) |
13 | | oveq2 7416 |
. . . . 5
β’ (π₯ = (π¦ + 1) β (1...π₯) = (1...(π¦ + 1))) |
14 | 13 | sumeq1d 15646 |
. . . 4
β’ (π₯ = (π¦ + 1) β Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1))) |
15 | 13 | sumeq1d 15646 |
. . . . . 6
β’ (π₯ = (π¦ + 1) β Ξ£π β (1...π₯)π = Ξ£π β (1...(π¦ + 1))π) |
16 | 15 | oveq2d 7424 |
. . . . 5
β’ (π₯ = (π¦ + 1) β (1...Ξ£π β (1...π₯)π) = (1...Ξ£π β (1...(π¦ + 1))π)) |
17 | 16 | sumeq1d 15646 |
. . . 4
β’ (π₯ = (π¦ + 1) β Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) = Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1)) |
18 | 14, 17 | eqeq12d 2748 |
. . 3
β’ (π₯ = (π¦ + 1) β (Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) β Ξ£π β (1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1))) |
19 | | oveq2 7416 |
. . . . 5
β’ (π₯ = π β (1...π₯) = (1...π)) |
20 | 19 | sumeq1d 15646 |
. . . 4
β’ (π₯ = π β Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...π)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1))) |
21 | 19 | sumeq1d 15646 |
. . . . . 6
β’ (π₯ = π β Ξ£π β (1...π₯)π = Ξ£π β (1...π)π) |
22 | 21 | oveq2d 7424 |
. . . . 5
β’ (π₯ = π β (1...Ξ£π β (1...π₯)π) = (1...Ξ£π β (1...π)π)) |
23 | 22 | sumeq1d 15646 |
. . . 4
β’ (π₯ = π β Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) = Ξ£π β (1...Ξ£π β (1...π)π)((2 Β· π) β 1)) |
24 | 20, 23 | eqeq12d 2748 |
. . 3
β’ (π₯ = π β (Ξ£π β (1...π₯)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π₯)π)((2 Β· π) β 1) β Ξ£π β (1...π)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π)π)((2 Β· π) β 1))) |
25 | | sum0 15666 |
. . . . 5
β’
Ξ£π β
β
Ξ£π β
(1...π)(((πβ2) β π) + ((2 Β· π) β 1)) =
0 |
26 | | sum0 15666 |
. . . . 5
β’
Ξ£π β
β
((2 Β· π)
β 1) = 0 |
27 | 25, 26 | eqtr4i 2763 |
. . . 4
β’
Ξ£π β
β
Ξ£π β
(1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β β
((2 Β·
π) β
1) |
28 | | fz10 13521 |
. . . . 5
β’ (1...0) =
β
|
29 | 28 | sumeq1i 15643 |
. . . 4
β’
Ξ£π β
(1...0)Ξ£π β
(1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β β
Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) |
30 | 28 | sumeq1i 15643 |
. . . . . . . 8
β’
Ξ£π β
(1...0)π = Ξ£π β β
π |
31 | | sum0 15666 |
. . . . . . . 8
β’
Ξ£π β
β
π =
0 |
32 | 30, 31 | eqtri 2760 |
. . . . . . 7
β’
Ξ£π β
(1...0)π =
0 |
33 | 32 | oveq2i 7419 |
. . . . . 6
β’
(1...Ξ£π β
(1...0)π) =
(1...0) |
34 | 33, 28 | eqtri 2760 |
. . . . 5
β’
(1...Ξ£π β
(1...0)π) =
β
|
35 | 34 | sumeq1i 15643 |
. . . 4
β’
Ξ£π β
(1...Ξ£π β
(1...0)π)((2 Β· π) β 1) = Ξ£π β β
((2 Β·
π) β
1) |
36 | 27, 29, 35 | 3eqtr4i 2770 |
. . 3
β’
Ξ£π β
(1...0)Ξ£π β
(1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...0)π)((2 Β· π) β 1) |
37 | | simpr 485 |
. . . . . 6
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) |
38 | | fzfid 13937 |
. . . . . . . . . . 11
β’ (π¦ β β0
β (1...π¦) β
Fin) |
39 | | elfznn 13529 |
. . . . . . . . . . . . 13
β’ (π β (1...π¦) β π β β) |
40 | 39 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β (1...π¦)) β π β β) |
41 | 40 | nnnn0d 12531 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β (1...π¦)) β π β β0) |
42 | 38, 41 | fsumnn0cl 15681 |
. . . . . . . . . 10
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π β β0) |
43 | 42 | nn0zd 12583 |
. . . . . . . . 9
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π β β€) |
44 | | nn0p1nn 12510 |
. . . . . . . . . . 11
β’
(Ξ£π β
(1...π¦)π β β0 β
(Ξ£π β (1...π¦)π + 1) β β) |
45 | 42, 44 | syl 17 |
. . . . . . . . . 10
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)π + 1) β β) |
46 | 45 | nnzd 12584 |
. . . . . . . . 9
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)π + 1) β β€) |
47 | | peano2nn0 12511 |
. . . . . . . . . . 11
β’ (π¦ β β0
β (π¦ + 1) β
β0) |
48 | 47 | nn0zd 12583 |
. . . . . . . . . 10
β’ (π¦ β β0
β (π¦ + 1) β
β€) |
49 | 43, 48 | zaddcld 12669 |
. . . . . . . . 9
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)π + (π¦ + 1)) β β€) |
50 | | 2cnd 12289 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) β 2 β
β) |
51 | | elfzelz 13500 |
. . . . . . . . . . . . 13
β’ (π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1))) β π β β€) |
52 | 51 | zcnd 12666 |
. . . . . . . . . . . 12
β’ (π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1))) β π β β) |
53 | 52 | adantl 482 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) β π β β) |
54 | 50, 53 | mulcld 11233 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) β (2 Β· π) β
β) |
55 | | 1cnd 11208 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) β 1 β
β) |
56 | 54, 55 | subcld 11570 |
. . . . . . . . 9
β’ ((π¦ β β0
β§ π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) β ((2 Β· π) β 1) β
β) |
57 | | oveq2 7416 |
. . . . . . . . . 10
β’ (π = (π + Ξ£π β (1...π¦)π) β (2 Β· π) = (2 Β· (π + Ξ£π β (1...π¦)π))) |
58 | 57 | oveq1d 7423 |
. . . . . . . . 9
β’ (π = (π + Ξ£π β (1...π¦)π) β ((2 Β· π) β 1) = ((2 Β· (π + Ξ£π β (1...π¦)π)) β 1)) |
59 | 43, 46, 49, 56, 58 | fsumshftm 15726 |
. . . . . . . 8
β’ (π¦ β β0
β Ξ£π β
((Ξ£π β
(1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1) = Ξ£π β (((Ξ£π β (1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π))((2 Β· (π + Ξ£π β (1...π¦)π)) β 1)) |
60 | | elfzelz 13500 |
. . . . . . . . . . . . . . 15
β’ (π β (1...π¦) β π β β€) |
61 | 60 | adantl 482 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β0
β§ π β (1...π¦)) β π β β€) |
62 | 61 | zred 12665 |
. . . . . . . . . . . . 13
β’ ((π¦ β β0
β§ π β (1...π¦)) β π β β) |
63 | 38, 62 | fsumrecl 15679 |
. . . . . . . . . . . 12
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π β β) |
64 | 63 | recnd 11241 |
. . . . . . . . . . 11
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π β β) |
65 | | 1cnd 11208 |
. . . . . . . . . . 11
β’ (π¦ β β0
β 1 β β) |
66 | 64, 65 | pncan2d 11572 |
. . . . . . . . . 10
β’ (π¦ β β0
β ((Ξ£π β
(1...π¦)π + 1) β Ξ£π β (1...π¦)π) = 1) |
67 | 47 | nn0cnd 12533 |
. . . . . . . . . . 11
β’ (π¦ β β0
β (π¦ + 1) β
β) |
68 | 64, 67 | pncan2d 11572 |
. . . . . . . . . 10
β’ (π¦ β β0
β ((Ξ£π β
(1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π) = (π¦ + 1)) |
69 | 66, 68 | oveq12d 7426 |
. . . . . . . . 9
β’ (π¦ β β0
β (((Ξ£π β
(1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π)) = (1...(π¦ + 1))) |
70 | | elfzelz 13500 |
. . . . . . . . . . 11
β’ (π β (((Ξ£π β (1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π)) β π β β€) |
71 | 70 | zcnd 12666 |
. . . . . . . . . 10
β’ (π β (((Ξ£π β (1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π)) β π β β) |
72 | | 2cnd 12289 |
. . . . . . . . . . . . 13
β’ ((π¦ β β0
β§ π β β)
β 2 β β) |
73 | | simpr 485 |
. . . . . . . . . . . . 13
β’ ((π¦ β β0
β§ π β β)
β π β
β) |
74 | 64 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π¦ β β0
β§ π β β)
β Ξ£π β
(1...π¦)π β β) |
75 | 72, 73, 74 | adddid 11237 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β (2 Β· (π +
Ξ£π β (1...π¦)π)) = ((2 Β· π) + (2 Β· Ξ£π β (1...π¦)π))) |
76 | 75 | oveq1d 7423 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β β)
β ((2 Β· (π +
Ξ£π β (1...π¦)π)) β 1) = (((2 Β· π) + (2 Β· Ξ£π β (1...π¦)π)) β 1)) |
77 | 72, 73 | mulcld 11233 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β (2 Β· π)
β β) |
78 | 72, 74 | mulcld 11233 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β (2 Β· Ξ£π
β (1...π¦)π) β
β) |
79 | | 1cnd 11208 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β 1 β β) |
80 | 77, 78, 79 | addsubassd 11590 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β β)
β (((2 Β· π) +
(2 Β· Ξ£π β
(1...π¦)π)) β 1) = ((2 Β· π) + ((2 Β· Ξ£π β (1...π¦)π) β 1))) |
81 | 77, 78, 79 | addsub12d 11593 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β ((2 Β· π) +
((2 Β· Ξ£π
β (1...π¦)π) β 1)) = ((2 Β·
Ξ£π β (1...π¦)π) + ((2 Β· π) β 1))) |
82 | | arisum 15805 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π = (((π¦β2) + π¦) / 2)) |
83 | 82 | oveq2d 7424 |
. . . . . . . . . . . . . . 15
β’ (π¦ β β0
β (2 Β· Ξ£π
β (1...π¦)π) = (2 Β· (((π¦β2) + π¦) / 2))) |
84 | | nn0cn 12481 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β β0
β π¦ β
β) |
85 | 84 | sqcld 14108 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β β0
β (π¦β2) β
β) |
86 | 85, 84 | addcld 11232 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β ((π¦β2) + π¦) β
β) |
87 | | 2cnd 12289 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β 2 β β) |
88 | | 2ne0 12315 |
. . . . . . . . . . . . . . . . 17
β’ 2 β
0 |
89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β 2 β 0) |
90 | 86, 87, 89 | divcan2d 11991 |
. . . . . . . . . . . . . . 15
β’ (π¦ β β0
β (2 Β· (((π¦β2) + π¦) / 2)) = ((π¦β2) + π¦)) |
91 | | binom21 14181 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β β β ((π¦ + 1)β2) = (((π¦β2) + (2 Β· π¦)) + 1)) |
92 | 84, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β β0
β ((π¦ + 1)β2) =
(((π¦β2) + (2 Β·
π¦)) + 1)) |
93 | 92 | oveq1d 7423 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β (((π¦ + 1)β2)
β (π¦ + 1)) =
((((π¦β2) + (2 Β·
π¦)) + 1) β (π¦ + 1))) |
94 | 87, 84 | mulcld 11233 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β β0
β (2 Β· π¦)
β β) |
95 | 85, 94 | addcld 11232 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β β0
β ((π¦β2) + (2
Β· π¦)) β
β) |
96 | 95, 84, 65 | pnpcan2d 11608 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β ((((π¦β2) + (2
Β· π¦)) + 1) β
(π¦ + 1)) = (((π¦β2) + (2 Β· π¦)) β π¦)) |
97 | 85, 94, 84 | addsubassd 11590 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β β0
β (((π¦β2) + (2
Β· π¦)) β π¦) = ((π¦β2) + ((2 Β· π¦) β π¦))) |
98 | 84 | 2timesd 12454 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ β β0
β (2 Β· π¦) =
(π¦ + π¦)) |
99 | 84, 84, 98 | mvrladdd 11626 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ β β0
β ((2 Β· π¦)
β π¦) = π¦) |
100 | 99 | oveq2d 7424 |
. . . . . . . . . . . . . . . . 17
β’ (π¦ β β0
β ((π¦β2) + ((2
Β· π¦) β π¦)) = ((π¦β2) + π¦)) |
101 | 97, 100 | eqtrd 2772 |
. . . . . . . . . . . . . . . 16
β’ (π¦ β β0
β (((π¦β2) + (2
Β· π¦)) β π¦) = ((π¦β2) + π¦)) |
102 | 93, 96, 101 | 3eqtrrd 2777 |
. . . . . . . . . . . . . . 15
β’ (π¦ β β0
β ((π¦β2) + π¦) = (((π¦ + 1)β2) β (π¦ + 1))) |
103 | 83, 90, 102 | 3eqtrd 2776 |
. . . . . . . . . . . . . 14
β’ (π¦ β β0
β (2 Β· Ξ£π
β (1...π¦)π) = (((π¦ + 1)β2) β (π¦ + 1))) |
104 | 103 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π¦ β β0
β§ π β β)
β (2 Β· Ξ£π
β (1...π¦)π) = (((π¦ + 1)β2) β (π¦ + 1))) |
105 | 104 | oveq1d 7423 |
. . . . . . . . . . . 12
β’ ((π¦ β β0
β§ π β β)
β ((2 Β· Ξ£π β (1...π¦)π) + ((2 Β· π) β 1)) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
106 | 81, 105 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((π¦ β β0
β§ π β β)
β ((2 Β· π) +
((2 Β· Ξ£π
β (1...π¦)π) β 1)) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
107 | 76, 80, 106 | 3eqtrd 2776 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β β)
β ((2 Β· (π +
Ξ£π β (1...π¦)π)) β 1) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
108 | 71, 107 | sylan2 593 |
. . . . . . . . 9
β’ ((π¦ β β0
β§ π β
(((Ξ£π β
(1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π))) β ((2 Β· (π + Ξ£π β (1...π¦)π)) β 1) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
109 | 69, 108 | sumeq12dv 15651 |
. . . . . . . 8
β’ (π¦ β β0
β Ξ£π β
(((Ξ£π β
(1...π¦)π + 1) β Ξ£π β (1...π¦)π)...((Ξ£π β (1...π¦)π + (π¦ + 1)) β Ξ£π β (1...π¦)π))((2 Β· (π + Ξ£π β (1...π¦)π)) β 1) = Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
110 | 59, 109 | eqtr2d 2773 |
. . . . . . 7
β’ (π¦ β β0
β Ξ£π β
(1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1)) = Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1)) |
111 | 110 | adantr 481 |
. . . . . 6
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1)) = Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1)) |
112 | 37, 111 | oveq12d 7426 |
. . . . 5
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β (Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) + Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) = (Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1) + Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1))) |
113 | | id 22 |
. . . . . . 7
β’ (π¦ β β0
β π¦ β
β0) |
114 | | fzfid 13937 |
. . . . . . . 8
β’ ((π¦ β β0
β§ π β (1...(π¦ + 1))) β (1...π) β Fin) |
115 | | elfzelz 13500 |
. . . . . . . . . . . . 13
β’ (π β (1...(π¦ + 1)) β π β β€) |
116 | 115 | zcnd 12666 |
. . . . . . . . . . . 12
β’ (π β (1...(π¦ + 1)) β π β β) |
117 | 116 | sqcld 14108 |
. . . . . . . . . . 11
β’ (π β (1...(π¦ + 1)) β (πβ2) β β) |
118 | 117, 116 | subcld 11570 |
. . . . . . . . . 10
β’ (π β (1...(π¦ + 1)) β ((πβ2) β π) β β) |
119 | | 2cnd 12289 |
. . . . . . . . . . . 12
β’ (π β (1...π) β 2 β β) |
120 | | elfzelz 13500 |
. . . . . . . . . . . . 13
β’ (π β (1...π) β π β β€) |
121 | 120 | zcnd 12666 |
. . . . . . . . . . . 12
β’ (π β (1...π) β π β β) |
122 | 119, 121 | mulcld 11233 |
. . . . . . . . . . 11
β’ (π β (1...π) β (2 Β· π) β β) |
123 | | 1cnd 11208 |
. . . . . . . . . . 11
β’ (π β (1...π) β 1 β β) |
124 | 122, 123 | subcld 11570 |
. . . . . . . . . 10
β’ (π β (1...π) β ((2 Β· π) β 1) β β) |
125 | | addcl 11191 |
. . . . . . . . . 10
β’ ((((πβ2) β π) β β β§ ((2
Β· π) β 1)
β β) β (((πβ2) β π) + ((2 Β· π) β 1)) β
β) |
126 | 118, 124,
125 | syl2an 596 |
. . . . . . . . 9
β’ ((π β (1...(π¦ + 1)) β§ π β (1...π)) β (((πβ2) β π) + ((2 Β· π) β 1)) β
β) |
127 | 126 | adantll 712 |
. . . . . . . 8
β’ (((π¦ β β0
β§ π β (1...(π¦ + 1))) β§ π β (1...π)) β (((πβ2) β π) + ((2 Β· π) β 1)) β
β) |
128 | 114, 127 | fsumcl 15678 |
. . . . . . 7
β’ ((π¦ β β0
β§ π β (1...(π¦ + 1))) β Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) β
β) |
129 | | oveq2 7416 |
. . . . . . . 8
β’ (π = (π¦ + 1) β (1...π) = (1...(π¦ + 1))) |
130 | | oveq1 7415 |
. . . . . . . . . . 11
β’ (π = (π¦ + 1) β (πβ2) = ((π¦ + 1)β2)) |
131 | | id 22 |
. . . . . . . . . . 11
β’ (π = (π¦ + 1) β π = (π¦ + 1)) |
132 | 130, 131 | oveq12d 7426 |
. . . . . . . . . 10
β’ (π = (π¦ + 1) β ((πβ2) β π) = (((π¦ + 1)β2) β (π¦ + 1))) |
133 | 132 | oveq1d 7423 |
. . . . . . . . 9
β’ (π = (π¦ + 1) β (((πβ2) β π) + ((2 Β· π) β 1)) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
134 | 133 | adantr 481 |
. . . . . . . 8
β’ ((π = (π¦ + 1) β§ π β (1...π)) β (((πβ2) β π) + ((2 Β· π) β 1)) = ((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
135 | 129, 134 | sumeq12dv 15651 |
. . . . . . 7
β’ (π = (π¦ + 1) β Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1))) |
136 | 113, 128,
135 | fz1sump1 41208 |
. . . . . 6
β’ (π¦ β β0
β Ξ£π β
(1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = (Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) + Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1)))) |
137 | 136 | adantr 481 |
. . . . 5
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = (Ξ£π β (1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) + Ξ£π β (1...(π¦ + 1))((((π¦ + 1)β2) β (π¦ + 1)) + ((2 Β· π) β 1)))) |
138 | 116 | adantl 482 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β (1...(π¦ + 1))) β π β
β) |
139 | 113, 138,
131 | fz1sump1 41208 |
. . . . . . . . 9
β’ (π¦ β β0
β Ξ£π β
(1...(π¦ + 1))π = (Ξ£π β (1...π¦)π + (π¦ + 1))) |
140 | 139 | adantr 481 |
. . . . . . . 8
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...(π¦ + 1))π = (Ξ£π β (1...π¦)π + (π¦ + 1))) |
141 | 140 | oveq2d 7424 |
. . . . . . 7
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β (1...Ξ£π β (1...(π¦ + 1))π) = (1...(Ξ£π β (1...π¦)π + (π¦ + 1)))) |
142 | 141 | sumeq1d 15646 |
. . . . . 6
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1) = Ξ£π β (1...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1)) |
143 | 63 | ltp1d 12143 |
. . . . . . . . 9
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π < (Ξ£π β (1...π¦)π + 1)) |
144 | | fzdisj 13527 |
. . . . . . . . 9
β’
(Ξ£π β
(1...π¦)π < (Ξ£π β (1...π¦)π + 1) β ((1...Ξ£π β (1...π¦)π) β© ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) = β
) |
145 | 143, 144 | syl 17 |
. . . . . . . 8
β’ (π¦ β β0
β ((1...Ξ£π
β (1...π¦)π) β© ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))) = β
) |
146 | | nnuz 12864 |
. . . . . . . . . 10
β’ β =
(β€β₯β1) |
147 | 45, 146 | eleqtrdi 2843 |
. . . . . . . . 9
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)π + 1) β
(β€β₯β1)) |
148 | 43 | uzidd 12837 |
. . . . . . . . . 10
β’ (π¦ β β0
β Ξ£π β
(1...π¦)π β
(β€β₯βΞ£π β (1...π¦)π)) |
149 | | uzaddcl 12887 |
. . . . . . . . . 10
β’
((Ξ£π β
(1...π¦)π β
(β€β₯βΞ£π β (1...π¦)π) β§ (π¦ + 1) β β0) β
(Ξ£π β (1...π¦)π + (π¦ + 1)) β
(β€β₯βΞ£π β (1...π¦)π)) |
150 | 148, 47, 149 | syl2anc 584 |
. . . . . . . . 9
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)π + (π¦ + 1)) β
(β€β₯βΞ£π β (1...π¦)π)) |
151 | | fzsplit2 13525 |
. . . . . . . . 9
β’
(((Ξ£π β
(1...π¦)π + 1) β (β€β₯β1)
β§ (Ξ£π β
(1...π¦)π + (π¦ + 1)) β
(β€β₯βΞ£π β (1...π¦)π)) β (1...(Ξ£π β (1...π¦)π + (π¦ + 1))) = ((1...Ξ£π β (1...π¦)π) βͺ ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1))))) |
152 | 147, 150,
151 | syl2anc 584 |
. . . . . . . 8
β’ (π¦ β β0
β (1...(Ξ£π
β (1...π¦)π + (π¦ + 1))) = ((1...Ξ£π β (1...π¦)π) βͺ ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1))))) |
153 | | fzfid 13937 |
. . . . . . . 8
β’ (π¦ β β0
β (1...(Ξ£π
β (1...π¦)π + (π¦ + 1))) β Fin) |
154 | | 2cnd 12289 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))) β 2 β
β) |
155 | | elfzelz 13500 |
. . . . . . . . . . . 12
β’ (π β (1...(Ξ£π β (1...π¦)π + (π¦ + 1))) β π β β€) |
156 | 155 | zcnd 12666 |
. . . . . . . . . . 11
β’ (π β (1...(Ξ£π β (1...π¦)π + (π¦ + 1))) β π β β) |
157 | 156 | adantl 482 |
. . . . . . . . . 10
β’ ((π¦ β β0
β§ π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))) β π β β) |
158 | 154, 157 | mulcld 11233 |
. . . . . . . . 9
β’ ((π¦ β β0
β§ π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))) β (2 Β· π) β
β) |
159 | | 1cnd 11208 |
. . . . . . . . 9
β’ ((π¦ β β0
β§ π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))) β 1 β
β) |
160 | 158, 159 | subcld 11570 |
. . . . . . . 8
β’ ((π¦ β β0
β§ π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))) β ((2 Β· π) β 1) β
β) |
161 | 145, 152,
153, 160 | fsumsplit 15686 |
. . . . . . 7
β’ (π¦ β β0
β Ξ£π β
(1...(Ξ£π β
(1...π¦)π + (π¦ + 1)))((2 Β· π) β 1) = (Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1) + Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1))) |
162 | 161 | adantr 481 |
. . . . . 6
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1) = (Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1) + Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1))) |
163 | 142, 162 | eqtrd 2772 |
. . . . 5
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1) = (Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1) + Ξ£π β ((Ξ£π β (1...π¦)π + 1)...(Ξ£π β (1...π¦)π + (π¦ + 1)))((2 Β· π) β 1))) |
164 | 112, 137,
163 | 3eqtr4d 2782 |
. . . 4
β’ ((π¦ β β0
β§ Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1)) β Ξ£π β (1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1)) |
165 | 164 | ex 413 |
. . 3
β’ (π¦ β β0
β (Ξ£π β
(1...π¦)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π¦)π)((2 Β· π) β 1) β Ξ£π β (1...(π¦ + 1))Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...(π¦ + 1))π)((2 Β· π) β 1))) |
166 | 6, 12, 18, 24, 36, 165 | nn0ind 12656 |
. 2
β’ (π β β0
β Ξ£π β
(1...π)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...Ξ£π β (1...π)π)((2 Β· π) β 1)) |
167 | | fz1ssnn 13531 |
. . . . . . 7
β’
(1...π) β
β |
168 | | nnssnn0 12474 |
. . . . . . 7
β’ β
β β0 |
169 | 167, 168 | sstri 3991 |
. . . . . 6
β’
(1...π) β
β0 |
170 | 169 | a1i 11 |
. . . . 5
β’ (π β β0
β (1...π) β
β0) |
171 | 170 | sselda 3982 |
. . . 4
β’ ((π β β0
β§ π β (1...π)) β π β β0) |
172 | | nicomachus 41210 |
. . . 4
β’ (π β β0
β Ξ£π β
(1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = (πβ3)) |
173 | 171, 172 | syl 17 |
. . 3
β’ ((π β β0
β§ π β (1...π)) β Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = (πβ3)) |
174 | 173 | sumeq2dv 15648 |
. 2
β’ (π β β0
β Ξ£π β
(1...π)Ξ£π β (1...π)(((πβ2) β π) + ((2 Β· π) β 1)) = Ξ£π β (1...π)(πβ3)) |
175 | | fzfid 13937 |
. . . 4
β’ (π β β0
β (1...π) β
Fin) |
176 | 175, 171 | fsumnn0cl 15681 |
. . 3
β’ (π β β0
β Ξ£π β
(1...π)π β β0) |
177 | | oddnumth 41209 |
. . 3
β’
(Ξ£π β
(1...π)π β β0 β
Ξ£π β
(1...Ξ£π β
(1...π)π)((2 Β· π) β 1) = (Ξ£π β (1...π)πβ2)) |
178 | 176, 177 | syl 17 |
. 2
β’ (π β β0
β Ξ£π β
(1...Ξ£π β
(1...π)π)((2 Β· π) β 1) = (Ξ£π β (1...π)πβ2)) |
179 | 166, 174,
178 | 3eqtr3d 2780 |
1
β’ (π β β0
β Ξ£π β
(1...π)(πβ3) = (Ξ£π β (1...π)πβ2)) |