Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumcubes Structured version   Visualization version   GIF version

Theorem sumcubes 42309
Description: The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
Assertion
Ref Expression
sumcubes (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem sumcubes
Dummy variables 𝑙 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7411 . . . . 5 (𝑥 = 0 → (1...𝑥) = (1...0))
21sumeq1d 15714 . . . 4 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
31sumeq1d 15714 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...0)𝑘)
43oveq2d 7419 . . . . 5 (𝑥 = 0 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...0)𝑘))
54sumeq1d 15714 . . . 4 (𝑥 = 0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1))
62, 5eqeq12d 2751 . . 3 (𝑥 = 0 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)))
7 oveq2 7411 . . . . 5 (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦))
87sumeq1d 15714 . . . 4 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
97sumeq1d 15714 . . . . . 6 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑦)𝑘)
109oveq2d 7419 . . . . 5 (𝑥 = 𝑦 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑦)𝑘))
1110sumeq1d 15714 . . . 4 (𝑥 = 𝑦 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
128, 11eqeq12d 2751 . . 3 (𝑥 = 𝑦 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)))
13 oveq2 7411 . . . . 5 (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1)))
1413sumeq1d 15714 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
1513sumeq1d 15714 . . . . . 6 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)
1615oveq2d 7419 . . . . 5 (𝑥 = (𝑦 + 1) → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘))
1716sumeq1d 15714 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
1814, 17eqeq12d 2751 . . 3 (𝑥 = (𝑦 + 1) → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
19 oveq2 7411 . . . . 5 (𝑥 = 𝑁 → (1...𝑥) = (1...𝑁))
2019sumeq1d 15714 . . . 4 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
2119sumeq1d 15714 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑁)𝑘)
2221oveq2d 7419 . . . . 5 (𝑥 = 𝑁 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑁)𝑘))
2322sumeq1d 15714 . . . 4 (𝑥 = 𝑁 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
2420, 23eqeq12d 2751 . . 3 (𝑥 = 𝑁 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1)))
25 sum0 15735 . . . . 5 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = 0
26 sum0 15735 . . . . 5 Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1) = 0
2725, 26eqtr4i 2761 . . . 4 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
28 fz10 13560 . . . . 5 (1...0) = ∅
2928sumeq1i 15711 . . . 4 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1))
3028sumeq1i 15711 . . . . . . . 8 Σ𝑘 ∈ (1...0)𝑘 = Σ𝑘 ∈ ∅ 𝑘
31 sum0 15735 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝑘 = 0
3230, 31eqtri 2758 . . . . . . 7 Σ𝑘 ∈ (1...0)𝑘 = 0
3332oveq2i 7414 . . . . . 6 (1...Σ𝑘 ∈ (1...0)𝑘) = (1...0)
3433, 28eqtri 2758 . . . . 5 (1...Σ𝑘 ∈ (1...0)𝑘) = ∅
3534sumeq1i 15711 . . . 4 Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
3627, 29, 353eqtr4i 2768 . . 3 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)
37 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
38 fzfid 13989 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (1...𝑦) ∈ Fin)
39 elfznn 13568 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
4039adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ)
4140nnnn0d 12560 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ0)
4238, 41fsumnn0cl 15750 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0)
4342nn0zd 12612 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℤ)
44 nn0p1nn 12538 . . . . . . . . . . 11 𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4542, 44syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4645nnzd 12613 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℤ)
47 peano2nn0 12539 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
4847nn0zd 12612 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℤ)
4943, 48zaddcld 12699 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ ℤ)
50 2cnd 12316 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
51 elfzelz 13539 . . . . . . . . . . . . 13 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
5251zcnd 12696 . . . . . . . . . . . 12 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
5352adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
5450, 53mulcld 11253 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
55 1cnd 11228 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
5654, 55subcld 11592 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
57 oveq2 7411 . . . . . . . . . 10 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → (2 · 𝑚) = (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)))
5857oveq1d 7418 . . . . . . . . 9 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → ((2 · 𝑚) − 1) = ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
5943, 46, 49, 56, 58fsumshftm 15795 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
60 elfzelz 13539 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℤ)
6261zred 12695 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℝ)
6338, 62fsumrecl 15748 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℝ)
6463recnd 11261 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
65 1cnd 11228 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
6664, 65pncan2d 11594 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘) = 1)
6747nn0cnd 12562 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℂ)
6864, 67pncan2d 11594 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘) = (𝑦 + 1))
6966, 68oveq12d 7421 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) = (1...(𝑦 + 1)))
70 elfzelz 13539 . . . . . . . . . . 11 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℤ)
7170zcnd 12696 . . . . . . . . . 10 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℂ)
72 2cnd 12316 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 2 ∈ ℂ)
73 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 𝑙 ∈ ℂ)
7464adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
7572, 73, 74adddid 11257 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) = ((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)))
7675oveq1d 7418 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
7772, 73mulcld 11253 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · 𝑙) ∈ ℂ)
7872, 74mulcld 11253 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) ∈ ℂ)
79 1cnd 11228 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11612 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)))
8177, 78, 79addsub12d 11615 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)))
82 arisum 15874 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 = (((𝑦↑2) + 𝑦) / 2))
8382oveq2d 7419 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (2 · (((𝑦↑2) + 𝑦) / 2)))
84 nn0cn 12509 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8584sqcld 14160 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
8685, 84addcld 11252 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) ∈ ℂ)
87 2cnd 12316 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
88 2ne0 12342 . . . . . . . . . . . . . . . . 17 2 ≠ 0
8988a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ≠ 0)
9086, 87, 89divcan2d 12017 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · (((𝑦↑2) + 𝑦) / 2)) = ((𝑦↑2) + 𝑦))
91 binom21 14235 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9284, 91syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9392oveq1d 7418 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦 + 1)↑2) − (𝑦 + 1)) = ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)))
9487, 84mulcld 11253 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (2 · 𝑦) ∈ ℂ)
9585, 94addcld 11252 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + (2 · 𝑦)) ∈ ℂ)
9695, 84, 65pnpcan2d 11630 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)) = (((𝑦↑2) + (2 · 𝑦)) − 𝑦))
9785, 94, 84addsubassd 11612 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + ((2 · 𝑦) − 𝑦)))
98842timesd 12482 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (𝑦 + 𝑦))
9984, 84, 98mvrladdd 11648 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((2 · 𝑦) − 𝑦) = 𝑦)
10099oveq2d 7419 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + ((2 · 𝑦) − 𝑦)) = ((𝑦↑2) + 𝑦))
10197, 100eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + 𝑦))
10293, 96, 1013eqtrrd 2775 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
10383, 90, 1023eqtrd 2774 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
104103adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
105104oveq1d 7418 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10681, 105eqtrd 2770 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10776, 80, 1063eqtrd 2774 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10871, 107sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10969, 108sumeq12dv 15720 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
11059, 109eqtr2d 2771 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
111110adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
11237, 111oveq12d 7421 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
113 id 22 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℕ0)
114 fzfid 13989 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → (1...𝑘) ∈ Fin)
115 elfzelz 13539 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℤ)
116115zcnd 12696 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℂ)
117116sqcld 14160 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑦 + 1)) → (𝑘↑2) ∈ ℂ)
118117, 116subcld 11592 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑦 + 1)) → ((𝑘↑2) − 𝑘) ∈ ℂ)
119 2cnd 12316 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 2 ∈ ℂ)
120 elfzelz 13539 . . . . . . . . . . . . 13 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℤ)
121120zcnd 12696 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℂ)
122119, 121mulcld 11253 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → (2 · 𝑙) ∈ ℂ)
123 1cnd 11228 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → 1 ∈ ℂ)
124122, 123subcld 11592 . . . . . . . . . 10 (𝑙 ∈ (1...𝑘) → ((2 · 𝑙) − 1) ∈ ℂ)
125 addcl 11209 . . . . . . . . . 10 ((((𝑘↑2) − 𝑘) ∈ ℂ ∧ ((2 · 𝑙) − 1) ∈ ℂ) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
126118, 124, 125syl2an 596 . . . . . . . . 9 ((𝑘 ∈ (1...(𝑦 + 1)) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
127126adantll 714 . . . . . . . 8 (((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
128114, 127fsumcl 15747 . . . . . . 7 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
129 oveq2 7411 . . . . . . . 8 (𝑘 = (𝑦 + 1) → (1...𝑘) = (1...(𝑦 + 1)))
130 oveq1 7410 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → (𝑘↑2) = ((𝑦 + 1)↑2))
131 id 22 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 𝑘 = (𝑦 + 1))
132130, 131oveq12d 7421 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → ((𝑘↑2) − 𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
133132oveq1d 7418 . . . . . . . . 9 (𝑘 = (𝑦 + 1) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
134133adantr 480 . . . . . . . 8 ((𝑘 = (𝑦 + 1) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
135129, 134sumeq12dv 15720 . . . . . . 7 (𝑘 = (𝑦 + 1) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
136113, 128, 135fz1sump1 42306 . . . . . 6 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
137136adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
138116adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → 𝑘 ∈ ℂ)
139113, 138, 131fz1sump1 42306 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
140139adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
141140oveq2d 7419 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘) = (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))))
142141sumeq1d 15714 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
14363ltp1d 12170 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1))
144 fzdisj 13566 . . . . . . . . 9 𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
145143, 144syl 17 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
146 nnuz 12893 . . . . . . . . . 10 ℕ = (ℤ‘1)
14745, 146eleqtrdi 2844 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1))
14843uzidd 12866 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
149 uzaddcl 12918 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘) ∧ (𝑦 + 1) ∈ ℕ0) → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
150148, 47, 149syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
151 fzsplit2 13564 . . . . . . . . 9 (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1) ∧ (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘)) → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
152147, 150, 151syl2anc 584 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
153 fzfid 13989 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) ∈ Fin)
154 2cnd 12316 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
155 elfzelz 13539 . . . . . . . . . . . 12 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
156155zcnd 12696 . . . . . . . . . . 11 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
157156adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
158154, 157mulcld 11253 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
159 1cnd 11228 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
160158, 159subcld 11592 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
161145, 152, 153, 160fsumsplit 15755 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
162161adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
163142, 162eqtrd 2770 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
164112, 137, 1633eqtr4d 2780 . . . 4 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
165164ex 412 . . 3 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
1666, 12, 18, 24, 36, 165nn0ind 12686 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
167 fz1ssnn 13570 . . . . . . 7 (1...𝑁) ⊆ ℕ
168 nnssnn0 12502 . . . . . . 7 ℕ ⊆ ℕ0
169167, 168sstri 3968 . . . . . 6 (1...𝑁) ⊆ ℕ0
170169a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ0)
171170sselda 3958 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
172 nicomachus 42308 . . . 4 (𝑘 ∈ ℕ0 → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
173171, 172syl 17 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
174173sumeq2dv 15716 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁)(𝑘↑3))
175 fzfid 13989 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
176175, 171fsumnn0cl 15750 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0)
177 oddnumth 42307 . . 3 𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
178176, 177syl 17 . 2 (𝑁 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
179166, 174, 1783eqtr3d 2778 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cun 3924  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  cexp 14077  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701
This theorem is referenced by:  sum9cubes  42642
  Copyright terms: Public domain W3C validator