Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumcubes Structured version   Visualization version   GIF version

Theorem sumcubes 42431
Description: The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
Assertion
Ref Expression
sumcubes (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem sumcubes
Dummy variables 𝑙 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . 5 (𝑥 = 0 → (1...𝑥) = (1...0))
21sumeq1d 15609 . . . 4 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
31sumeq1d 15609 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...0)𝑘)
43oveq2d 7368 . . . . 5 (𝑥 = 0 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...0)𝑘))
54sumeq1d 15609 . . . 4 (𝑥 = 0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1))
62, 5eqeq12d 2749 . . 3 (𝑥 = 0 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)))
7 oveq2 7360 . . . . 5 (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦))
87sumeq1d 15609 . . . 4 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
97sumeq1d 15609 . . . . . 6 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑦)𝑘)
109oveq2d 7368 . . . . 5 (𝑥 = 𝑦 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑦)𝑘))
1110sumeq1d 15609 . . . 4 (𝑥 = 𝑦 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
128, 11eqeq12d 2749 . . 3 (𝑥 = 𝑦 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)))
13 oveq2 7360 . . . . 5 (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1)))
1413sumeq1d 15609 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
1513sumeq1d 15609 . . . . . 6 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)
1615oveq2d 7368 . . . . 5 (𝑥 = (𝑦 + 1) → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘))
1716sumeq1d 15609 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
1814, 17eqeq12d 2749 . . 3 (𝑥 = (𝑦 + 1) → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
19 oveq2 7360 . . . . 5 (𝑥 = 𝑁 → (1...𝑥) = (1...𝑁))
2019sumeq1d 15609 . . . 4 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
2119sumeq1d 15609 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑁)𝑘)
2221oveq2d 7368 . . . . 5 (𝑥 = 𝑁 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑁)𝑘))
2322sumeq1d 15609 . . . 4 (𝑥 = 𝑁 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
2420, 23eqeq12d 2749 . . 3 (𝑥 = 𝑁 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1)))
25 sum0 15630 . . . . 5 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = 0
26 sum0 15630 . . . . 5 Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1) = 0
2725, 26eqtr4i 2759 . . . 4 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
28 fz10 13447 . . . . 5 (1...0) = ∅
2928sumeq1i 15606 . . . 4 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1))
3028sumeq1i 15606 . . . . . . . 8 Σ𝑘 ∈ (1...0)𝑘 = Σ𝑘 ∈ ∅ 𝑘
31 sum0 15630 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝑘 = 0
3230, 31eqtri 2756 . . . . . . 7 Σ𝑘 ∈ (1...0)𝑘 = 0
3332oveq2i 7363 . . . . . 6 (1...Σ𝑘 ∈ (1...0)𝑘) = (1...0)
3433, 28eqtri 2756 . . . . 5 (1...Σ𝑘 ∈ (1...0)𝑘) = ∅
3534sumeq1i 15606 . . . 4 Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
3627, 29, 353eqtr4i 2766 . . 3 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)
37 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
38 fzfid 13882 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (1...𝑦) ∈ Fin)
39 elfznn 13455 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
4039adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ)
4140nnnn0d 12449 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ0)
4238, 41fsumnn0cl 15645 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0)
4342nn0zd 12500 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℤ)
44 nn0p1nn 12427 . . . . . . . . . . 11 𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4542, 44syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4645nnzd 12501 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℤ)
47 peano2nn0 12428 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
4847nn0zd 12500 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℤ)
4943, 48zaddcld 12587 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ ℤ)
50 2cnd 12210 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
51 elfzelz 13426 . . . . . . . . . . . . 13 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
5251zcnd 12584 . . . . . . . . . . . 12 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
5352adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
5450, 53mulcld 11139 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
55 1cnd 11114 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
5654, 55subcld 11479 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
57 oveq2 7360 . . . . . . . . . 10 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → (2 · 𝑚) = (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)))
5857oveq1d 7367 . . . . . . . . 9 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → ((2 · 𝑚) − 1) = ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
5943, 46, 49, 56, 58fsumshftm 15690 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
60 elfzelz 13426 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℤ)
6261zred 12583 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℝ)
6338, 62fsumrecl 15643 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℝ)
6463recnd 11147 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
65 1cnd 11114 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
6664, 65pncan2d 11481 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘) = 1)
6747nn0cnd 12451 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℂ)
6864, 67pncan2d 11481 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘) = (𝑦 + 1))
6966, 68oveq12d 7370 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) = (1...(𝑦 + 1)))
70 elfzelz 13426 . . . . . . . . . . 11 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℤ)
7170zcnd 12584 . . . . . . . . . 10 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℂ)
72 2cnd 12210 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 2 ∈ ℂ)
73 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 𝑙 ∈ ℂ)
7464adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
7572, 73, 74adddid 11143 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) = ((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)))
7675oveq1d 7367 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
7772, 73mulcld 11139 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · 𝑙) ∈ ℂ)
7872, 74mulcld 11139 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) ∈ ℂ)
79 1cnd 11114 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11499 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)))
8177, 78, 79addsub12d 11502 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)))
82 arisum 15769 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 = (((𝑦↑2) + 𝑦) / 2))
8382oveq2d 7368 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (2 · (((𝑦↑2) + 𝑦) / 2)))
84 nn0cn 12398 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8584sqcld 14053 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
8685, 84addcld 11138 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) ∈ ℂ)
87 2cnd 12210 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
88 2ne0 12236 . . . . . . . . . . . . . . . . 17 2 ≠ 0
8988a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ≠ 0)
9086, 87, 89divcan2d 11906 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · (((𝑦↑2) + 𝑦) / 2)) = ((𝑦↑2) + 𝑦))
91 binom21 14128 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9284, 91syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9392oveq1d 7367 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦 + 1)↑2) − (𝑦 + 1)) = ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)))
9487, 84mulcld 11139 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (2 · 𝑦) ∈ ℂ)
9585, 94addcld 11138 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + (2 · 𝑦)) ∈ ℂ)
9695, 84, 65pnpcan2d 11517 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)) = (((𝑦↑2) + (2 · 𝑦)) − 𝑦))
9785, 94, 84addsubassd 11499 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + ((2 · 𝑦) − 𝑦)))
98842timesd 12371 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (𝑦 + 𝑦))
9984, 84, 98mvrladdd 11537 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((2 · 𝑦) − 𝑦) = 𝑦)
10099oveq2d 7368 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + ((2 · 𝑦) − 𝑦)) = ((𝑦↑2) + 𝑦))
10197, 100eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + 𝑦))
10293, 96, 1013eqtrrd 2773 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
10383, 90, 1023eqtrd 2772 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
104103adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
105104oveq1d 7367 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10681, 105eqtrd 2768 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10776, 80, 1063eqtrd 2772 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10871, 107sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10969, 108sumeq12dv 15615 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
11059, 109eqtr2d 2769 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
111110adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
11237, 111oveq12d 7370 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
113 id 22 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℕ0)
114 fzfid 13882 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → (1...𝑘) ∈ Fin)
115 elfzelz 13426 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℤ)
116115zcnd 12584 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℂ)
117116sqcld 14053 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑦 + 1)) → (𝑘↑2) ∈ ℂ)
118117, 116subcld 11479 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑦 + 1)) → ((𝑘↑2) − 𝑘) ∈ ℂ)
119 2cnd 12210 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 2 ∈ ℂ)
120 elfzelz 13426 . . . . . . . . . . . . 13 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℤ)
121120zcnd 12584 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℂ)
122119, 121mulcld 11139 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → (2 · 𝑙) ∈ ℂ)
123 1cnd 11114 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → 1 ∈ ℂ)
124122, 123subcld 11479 . . . . . . . . . 10 (𝑙 ∈ (1...𝑘) → ((2 · 𝑙) − 1) ∈ ℂ)
125 addcl 11095 . . . . . . . . . 10 ((((𝑘↑2) − 𝑘) ∈ ℂ ∧ ((2 · 𝑙) − 1) ∈ ℂ) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
126118, 124, 125syl2an 596 . . . . . . . . 9 ((𝑘 ∈ (1...(𝑦 + 1)) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
127126adantll 714 . . . . . . . 8 (((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
128114, 127fsumcl 15642 . . . . . . 7 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
129 oveq2 7360 . . . . . . . 8 (𝑘 = (𝑦 + 1) → (1...𝑘) = (1...(𝑦 + 1)))
130 oveq1 7359 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → (𝑘↑2) = ((𝑦 + 1)↑2))
131 id 22 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 𝑘 = (𝑦 + 1))
132130, 131oveq12d 7370 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → ((𝑘↑2) − 𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
133132oveq1d 7367 . . . . . . . . 9 (𝑘 = (𝑦 + 1) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
134133adantr 480 . . . . . . . 8 ((𝑘 = (𝑦 + 1) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
135129, 134sumeq12dv 15615 . . . . . . 7 (𝑘 = (𝑦 + 1) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
136113, 128, 135fz1sump1 42428 . . . . . 6 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
137136adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
138116adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → 𝑘 ∈ ℂ)
139113, 138, 131fz1sump1 42428 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
140139adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
141140oveq2d 7368 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘) = (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))))
142141sumeq1d 15609 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
14363ltp1d 12059 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1))
144 fzdisj 13453 . . . . . . . . 9 𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
145143, 144syl 17 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
146 nnuz 12777 . . . . . . . . . 10 ℕ = (ℤ‘1)
14745, 146eleqtrdi 2843 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1))
14843uzidd 12754 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
149 uzaddcl 12804 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘) ∧ (𝑦 + 1) ∈ ℕ0) → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
150148, 47, 149syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
151 fzsplit2 13451 . . . . . . . . 9 (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1) ∧ (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘)) → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
152147, 150, 151syl2anc 584 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
153 fzfid 13882 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) ∈ Fin)
154 2cnd 12210 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
155 elfzelz 13426 . . . . . . . . . . . 12 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
156155zcnd 12584 . . . . . . . . . . 11 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
157156adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
158154, 157mulcld 11139 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
159 1cnd 11114 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
160158, 159subcld 11479 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
161145, 152, 153, 160fsumsplit 15650 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
162161adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
163142, 162eqtrd 2768 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
164112, 137, 1633eqtr4d 2778 . . . 4 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
165164ex 412 . . 3 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
1666, 12, 18, 24, 36, 165nn0ind 12574 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
167 fz1ssnn 13457 . . . . . . 7 (1...𝑁) ⊆ ℕ
168 nnssnn0 12391 . . . . . . 7 ℕ ⊆ ℕ0
169167, 168sstri 3940 . . . . . 6 (1...𝑁) ⊆ ℕ0
170169a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ0)
171170sselda 3930 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
172 nicomachus 42430 . . . 4 (𝑘 ∈ ℕ0 → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
173171, 172syl 17 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
174173sumeq2dv 15611 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁)(𝑘↑3))
175 fzfid 13882 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
176175, 171fsumnn0cl 15645 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0)
177 oddnumth 42429 . . 3 𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
178176, 177syl 17 . 2 (𝑁 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
179166, 174, 1783eqtr3d 2776 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cun 3896  cin 3897  wss 3898  c0 4282   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  0cn0 12388  cz 12475  cuz 12738  ...cfz 13409  cexp 13970  Σcsu 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596
This theorem is referenced by:  sum9cubes  42790
  Copyright terms: Public domain W3C validator