Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumcubes Structured version   Visualization version   GIF version

Theorem sumcubes 42286
Description: The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
Assertion
Ref Expression
sumcubes (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem sumcubes
Dummy variables 𝑙 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . 5 (𝑥 = 0 → (1...𝑥) = (1...0))
21sumeq1d 15625 . . . 4 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
31sumeq1d 15625 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...0)𝑘)
43oveq2d 7369 . . . . 5 (𝑥 = 0 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...0)𝑘))
54sumeq1d 15625 . . . 4 (𝑥 = 0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1))
62, 5eqeq12d 2745 . . 3 (𝑥 = 0 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)))
7 oveq2 7361 . . . . 5 (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦))
87sumeq1d 15625 . . . 4 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
97sumeq1d 15625 . . . . . 6 (𝑥 = 𝑦 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑦)𝑘)
109oveq2d 7369 . . . . 5 (𝑥 = 𝑦 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑦)𝑘))
1110sumeq1d 15625 . . . 4 (𝑥 = 𝑦 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
128, 11eqeq12d 2745 . . 3 (𝑥 = 𝑦 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)))
13 oveq2 7361 . . . . 5 (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1)))
1413sumeq1d 15625 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
1513sumeq1d 15625 . . . . . 6 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)
1615oveq2d 7369 . . . . 5 (𝑥 = (𝑦 + 1) → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘))
1716sumeq1d 15625 . . . 4 (𝑥 = (𝑦 + 1) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
1814, 17eqeq12d 2745 . . 3 (𝑥 = (𝑦 + 1) → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
19 oveq2 7361 . . . . 5 (𝑥 = 𝑁 → (1...𝑥) = (1...𝑁))
2019sumeq1d 15625 . . . 4 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)))
2119sumeq1d 15625 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑥)𝑘 = Σ𝑘 ∈ (1...𝑁)𝑘)
2221oveq2d 7369 . . . . 5 (𝑥 = 𝑁 → (1...Σ𝑘 ∈ (1...𝑥)𝑘) = (1...Σ𝑘 ∈ (1...𝑁)𝑘))
2322sumeq1d 15625 . . . 4 (𝑥 = 𝑁 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
2420, 23eqeq12d 2745 . . 3 (𝑥 = 𝑁 → (Σ𝑘 ∈ (1...𝑥𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑥)𝑘)((2 · 𝑚) − 1) ↔ Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1)))
25 sum0 15646 . . . . 5 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = 0
26 sum0 15646 . . . . 5 Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1) = 0
2725, 26eqtr4i 2755 . . . 4 Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
28 fz10 13466 . . . . 5 (1...0) = ∅
2928sumeq1i 15622 . . . 4 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ ∅ Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1))
3028sumeq1i 15622 . . . . . . . 8 Σ𝑘 ∈ (1...0)𝑘 = Σ𝑘 ∈ ∅ 𝑘
31 sum0 15646 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝑘 = 0
3230, 31eqtri 2752 . . . . . . 7 Σ𝑘 ∈ (1...0)𝑘 = 0
3332oveq2i 7364 . . . . . 6 (1...Σ𝑘 ∈ (1...0)𝑘) = (1...0)
3433, 28eqtri 2752 . . . . 5 (1...Σ𝑘 ∈ (1...0)𝑘) = ∅
3534sumeq1i 15622 . . . 4 Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ ∅ ((2 · 𝑚) − 1)
3627, 29, 353eqtr4i 2762 . . 3 Σ𝑘 ∈ (1...0)Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...0)𝑘)((2 · 𝑚) − 1)
37 simpr 484 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1))
38 fzfid 13898 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (1...𝑦) ∈ Fin)
39 elfznn 13474 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
4039adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ)
4140nnnn0d 12463 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℕ0)
4238, 41fsumnn0cl 15661 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0)
4342nn0zd 12515 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℤ)
44 nn0p1nn 12441 . . . . . . . . . . 11 𝑘 ∈ (1...𝑦)𝑘 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4542, 44syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℕ)
4645nnzd 12516 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ ℤ)
47 peano2nn0 12442 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
4847nn0zd 12515 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℤ)
4943, 48zaddcld 12602 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ ℤ)
50 2cnd 12224 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
51 elfzelz 13445 . . . . . . . . . . . . 13 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
5251zcnd 12599 . . . . . . . . . . . 12 (𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
5352adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
5450, 53mulcld 11154 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
55 1cnd 11129 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
5654, 55subcld 11493 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
57 oveq2 7361 . . . . . . . . . 10 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → (2 · 𝑚) = (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)))
5857oveq1d 7368 . . . . . . . . 9 (𝑚 = (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘) → ((2 · 𝑚) − 1) = ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
5943, 46, 49, 56, 58fsumshftm 15706 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
60 elfzelz 13445 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℤ)
6261zred 12598 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑘 ∈ (1...𝑦)) → 𝑘 ∈ ℝ)
6338, 62fsumrecl 15659 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℝ)
6463recnd 11162 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
65 1cnd 11129 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
6664, 65pncan2d 11495 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘) = 1)
6747nn0cnd 12465 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℂ)
6864, 67pncan2d 11495 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘) = (𝑦 + 1))
6966, 68oveq12d 7371 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) = (1...(𝑦 + 1)))
70 elfzelz 13445 . . . . . . . . . . 11 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℤ)
7170zcnd 12599 . . . . . . . . . 10 (𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘)) → 𝑙 ∈ ℂ)
72 2cnd 12224 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 2 ∈ ℂ)
73 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 𝑙 ∈ ℂ)
7464adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ ℂ)
7572, 73, 74adddid 11158 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) = ((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)))
7675oveq1d 7368 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1))
7772, 73mulcld 11154 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · 𝑙) ∈ ℂ)
7872, 74mulcld 11154 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) ∈ ℂ)
79 1cnd 11129 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → 1 ∈ ℂ)
8077, 78, 79addsubassd 11513 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (((2 · 𝑙) + (2 · Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)))
8177, 78, 79addsub12d 11516 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)))
82 arisum 15785 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 = (((𝑦↑2) + 𝑦) / 2))
8382oveq2d 7369 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (2 · (((𝑦↑2) + 𝑦) / 2)))
84 nn0cn 12412 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8584sqcld 14069 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
8685, 84addcld 11153 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) ∈ ℂ)
87 2cnd 12224 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
88 2ne0 12250 . . . . . . . . . . . . . . . . 17 2 ≠ 0
8988a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → 2 ≠ 0)
9086, 87, 89divcan2d 11920 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2 · (((𝑦↑2) + 𝑦) / 2)) = ((𝑦↑2) + 𝑦))
91 binom21 14144 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9284, 91syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦 + 1)↑2) = (((𝑦↑2) + (2 · 𝑦)) + 1))
9392oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦 + 1)↑2) − (𝑦 + 1)) = ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)))
9487, 84mulcld 11154 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (2 · 𝑦) ∈ ℂ)
9585, 94addcld 11153 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + (2 · 𝑦)) ∈ ℂ)
9695, 84, 65pnpcan2d 11531 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → ((((𝑦↑2) + (2 · 𝑦)) + 1) − (𝑦 + 1)) = (((𝑦↑2) + (2 · 𝑦)) − 𝑦))
9785, 94, 84addsubassd 11513 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + ((2 · 𝑦) − 𝑦)))
98842timesd 12385 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → (2 · 𝑦) = (𝑦 + 𝑦))
9984, 84, 98mvrladdd 11551 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((2 · 𝑦) − 𝑦) = 𝑦)
10099oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ0 → ((𝑦↑2) + ((2 · 𝑦) − 𝑦)) = ((𝑦↑2) + 𝑦))
10197, 100eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (((𝑦↑2) + (2 · 𝑦)) − 𝑦) = ((𝑦↑2) + 𝑦))
10293, 96, 1013eqtrrd 2769 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → ((𝑦↑2) + 𝑦) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
10383, 90, 1023eqtrd 2768 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
104103adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → (2 · Σ𝑘 ∈ (1...𝑦)𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
105104oveq1d 7368 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10681, 105eqtrd 2764 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · 𝑙) + ((2 · Σ𝑘 ∈ (1...𝑦)𝑘) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10776, 80, 1063eqtrd 2768 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑙 ∈ ℂ) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10871, 107sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))) → ((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
10969, 108sumeq12dv 15631 . . . . . . . 8 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) − Σ𝑘 ∈ (1...𝑦)𝑘)...((Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) − Σ𝑘 ∈ (1...𝑦)𝑘))((2 · (𝑙 + Σ𝑘 ∈ (1...𝑦)𝑘)) − 1) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
11059, 109eqtr2d 2765 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
111110adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
11237, 111oveq12d 7371 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
113 id 22 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℕ0)
114 fzfid 13898 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → (1...𝑘) ∈ Fin)
115 elfzelz 13445 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℤ)
116115zcnd 12599 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑦 + 1)) → 𝑘 ∈ ℂ)
117116sqcld 14069 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑦 + 1)) → (𝑘↑2) ∈ ℂ)
118117, 116subcld 11493 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑦 + 1)) → ((𝑘↑2) − 𝑘) ∈ ℂ)
119 2cnd 12224 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 2 ∈ ℂ)
120 elfzelz 13445 . . . . . . . . . . . . 13 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℤ)
121120zcnd 12599 . . . . . . . . . . . 12 (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℂ)
122119, 121mulcld 11154 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → (2 · 𝑙) ∈ ℂ)
123 1cnd 11129 . . . . . . . . . . 11 (𝑙 ∈ (1...𝑘) → 1 ∈ ℂ)
124122, 123subcld 11493 . . . . . . . . . 10 (𝑙 ∈ (1...𝑘) → ((2 · 𝑙) − 1) ∈ ℂ)
125 addcl 11110 . . . . . . . . . 10 ((((𝑘↑2) − 𝑘) ∈ ℂ ∧ ((2 · 𝑙) − 1) ∈ ℂ) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
126118, 124, 125syl2an 596 . . . . . . . . 9 ((𝑘 ∈ (1...(𝑦 + 1)) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
127126adantll 714 . . . . . . . 8 (((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
128114, 127fsumcl 15658 . . . . . . 7 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) ∈ ℂ)
129 oveq2 7361 . . . . . . . 8 (𝑘 = (𝑦 + 1) → (1...𝑘) = (1...(𝑦 + 1)))
130 oveq1 7360 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → (𝑘↑2) = ((𝑦 + 1)↑2))
131 id 22 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 𝑘 = (𝑦 + 1))
132130, 131oveq12d 7371 . . . . . . . . . 10 (𝑘 = (𝑦 + 1) → ((𝑘↑2) − 𝑘) = (((𝑦 + 1)↑2) − (𝑦 + 1)))
133132oveq1d 7368 . . . . . . . . 9 (𝑘 = (𝑦 + 1) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
134133adantr 480 . . . . . . . 8 ((𝑘 = (𝑦 + 1) ∧ 𝑙 ∈ (1...𝑘)) → (((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = ((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
135129, 134sumeq12dv 15631 . . . . . . 7 (𝑘 = (𝑦 + 1) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1)))
136113, 128, 135fz1sump1 42283 . . . . . 6 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
137136adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) + Σ𝑙 ∈ (1...(𝑦 + 1))((((𝑦 + 1)↑2) − (𝑦 + 1)) + ((2 · 𝑙) − 1))))
138116adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑘 ∈ (1...(𝑦 + 1))) → 𝑘 ∈ ℂ)
139113, 138, 131fz1sump1 42283 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
140139adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))𝑘 = (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))
141140oveq2d 7369 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘) = (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))))
142141sumeq1d 15625 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1))
14363ltp1d 12073 . . . . . . . . 9 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1))
144 fzdisj 13472 . . . . . . . . 9 𝑘 ∈ (1...𝑦)𝑘 < (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
145143, 144syl 17 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∩ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) = ∅)
146 nnuz 12796 . . . . . . . . . 10 ℕ = (ℤ‘1)
14745, 146eleqtrdi 2838 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1))
14843uzidd 12769 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
149 uzaddcl 12823 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑦)𝑘 ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘) ∧ (𝑦 + 1) ∈ ℕ0) → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
150148, 47, 149syl2anc 584 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘))
151 fzsplit2 13470 . . . . . . . . 9 (((Σ𝑘 ∈ (1...𝑦)𝑘 + 1) ∈ (ℤ‘1) ∧ (Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)) ∈ (ℤ‘Σ𝑘 ∈ (1...𝑦)𝑘)) → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
152147, 150, 151syl2anc 584 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) = ((1...Σ𝑘 ∈ (1...𝑦)𝑘) ∪ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))))
153 fzfid 13898 . . . . . . . 8 (𝑦 ∈ ℕ0 → (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) ∈ Fin)
154 2cnd 12224 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 2 ∈ ℂ)
155 elfzelz 13445 . . . . . . . . . . . 12 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℤ)
156155zcnd 12599 . . . . . . . . . . 11 (𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1))) → 𝑚 ∈ ℂ)
157156adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 𝑚 ∈ ℂ)
158154, 157mulcld 11154 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → (2 · 𝑚) ∈ ℂ)
159 1cnd 11129 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → 1 ∈ ℂ)
160158, 159subcld 11493 . . . . . . . 8 ((𝑦 ∈ ℕ0𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))) → ((2 · 𝑚) − 1) ∈ ℂ)
161145, 152, 153, 160fsumsplit 15666 . . . . . . 7 (𝑦 ∈ ℕ0 → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
162161adantr 480 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
163142, 162eqtrd 2764 . . . . 5 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1) = (Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) + Σ𝑚 ∈ ((Σ𝑘 ∈ (1...𝑦)𝑘 + 1)...(Σ𝑘 ∈ (1...𝑦)𝑘 + (𝑦 + 1)))((2 · 𝑚) − 1)))
164112, 137, 1633eqtr4d 2774 . . . 4 ((𝑦 ∈ ℕ0 ∧ Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1)) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1))
165164ex 412 . . 3 (𝑦 ∈ ℕ0 → (Σ𝑘 ∈ (1...𝑦𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑦)𝑘)((2 · 𝑚) − 1) → Σ𝑘 ∈ (1...(𝑦 + 1))Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...(𝑦 + 1))𝑘)((2 · 𝑚) − 1)))
1666, 12, 18, 24, 36, 165nn0ind 12589 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1))
167 fz1ssnn 13476 . . . . . . 7 (1...𝑁) ⊆ ℕ
168 nnssnn0 12405 . . . . . . 7 ℕ ⊆ ℕ0
169167, 168sstri 3947 . . . . . 6 (1...𝑁) ⊆ ℕ0
170169a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ0)
171170sselda 3937 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
172 nicomachus 42285 . . . 4 (𝑘 ∈ ℕ0 → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
173171, 172syl 17 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → Σ𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = (𝑘↑3))
174173sumeq2dv 15627 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁𝑙 ∈ (1...𝑘)(((𝑘↑2) − 𝑘) + ((2 · 𝑙) − 1)) = Σ𝑘 ∈ (1...𝑁)(𝑘↑3))
175 fzfid 13898 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
176175, 171fsumnn0cl 15661 . . 3 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0)
177 oddnumth 42284 . . 3 𝑘 ∈ (1...𝑁)𝑘 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
178176, 177syl 17 . 2 (𝑁 ∈ ℕ0 → Σ𝑚 ∈ (1...Σ𝑘 ∈ (1...𝑁)𝑘)((2 · 𝑚) − 1) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
179166, 174, 1783eqtr3d 2772 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cun 3903  cin 3904  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cexp 13986  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by:  sum9cubes  42645
  Copyright terms: Public domain W3C validator