Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnnn0d | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 11982 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | nnnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
3 | 1, 2 | sseldi 3876 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Copyright terms: Public domain | W3C validator |