| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0d | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 12529 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | nnnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 3 | 1, 2 | sselid 3981 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Copyright terms: Public domain | W3C validator |