MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divex Structured version   Visualization version   GIF version

Theorem ply1divex 26191
Description: Lemma for ply1divalg 26192: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = (deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divex.o 1 = (1r𝑅)
ply1divex.k 𝐾 = (Base‘𝑅)
ply1divex.u · = (.r𝑅)
ply1divex.i (𝜑𝐼𝐾)
ply1divex.g3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) · 𝐼) = 1 )
Assertion
Ref Expression
ply1divex (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   0 ,𝑞   𝐹,𝑞   𝐼,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   𝐵,𝑞   ,𝑞   𝐷,𝑞   𝐺,𝑞   𝜑,𝑞   · ,𝑞
Allowed substitution hints:   1 (𝑞)   𝐾(𝑞)

Proof of Theorem ply1divex
Dummy variables 𝑑 𝑓 𝑟 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝐹 = 0 → (𝐷𝐹) = (𝐷0 ))
21breq1d 5158 . . . 4 (𝐹 = 0 → ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) ↔ (𝐷0 ) < ((𝐷𝐺) + 𝑑)))
32rexbidv 3177 . . 3 (𝐹 = 0 → (∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑) ↔ ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑)))
4 nnssnn0 12527 . . . . 5 ℕ ⊆ ℕ0
5 ply1divalg.r1 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
65adantr 480 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝑅 ∈ Ring)
7 ply1divalg.f . . . . . . . . . 10 (𝜑𝐹𝐵)
87adantr 480 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝐹𝐵)
9 simpr 484 . . . . . . . . 9 ((𝜑𝐹0 ) → 𝐹0 )
10 ply1divalg.d . . . . . . . . . 10 𝐷 = (deg1𝑅)
11 ply1divalg.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
12 ply1divalg.z . . . . . . . . . 10 0 = (0g𝑃)
13 ply1divalg.b . . . . . . . . . 10 𝐵 = (Base‘𝑃)
1410, 11, 12, 13deg1nn0cl 26142 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
156, 8, 9, 14syl3anc 1370 . . . . . . . 8 ((𝜑𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
1615nn0red 12586 . . . . . . 7 ((𝜑𝐹0 ) → (𝐷𝐹) ∈ ℝ)
17 ply1divalg.g1 . . . . . . . . . 10 (𝜑𝐺𝐵)
18 ply1divalg.g2 . . . . . . . . . 10 (𝜑𝐺0 )
1910, 11, 12, 13deg1nn0cl 26142 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
205, 17, 18, 19syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐷𝐺) ∈ ℕ0)
2120nn0red 12586 . . . . . . . 8 (𝜑 → (𝐷𝐺) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑𝐹0 ) → (𝐷𝐺) ∈ ℝ)
2316, 22resubcld 11689 . . . . . 6 ((𝜑𝐹0 ) → ((𝐷𝐹) − (𝐷𝐺)) ∈ ℝ)
24 arch 12521 . . . . . 6 (((𝐷𝐹) − (𝐷𝐺)) ∈ ℝ → ∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
2523, 24syl 17 . . . . 5 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
26 ssrexv 4065 . . . . 5 (ℕ ⊆ ℕ0 → (∃𝑑 ∈ ℕ ((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → ∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑))
274, 25, 26mpsyl 68 . . . 4 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑)
2816adantr 480 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (𝐷𝐹) ∈ ℝ)
2921ad2antrr 726 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℝ)
30 nn0re 12533 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
3130adantl 481 . . . . . . 7 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → 𝑑 ∈ ℝ)
3228, 29, 31ltsubadd2d 11859 . . . . . 6 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (((𝐷𝐹) − (𝐷𝐺)) < 𝑑 ↔ (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3332biimpd 229 . . . . 5 (((𝜑𝐹0 ) ∧ 𝑑 ∈ ℕ0) → (((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3433reximdva 3166 . . . 4 ((𝜑𝐹0 ) → (∃𝑑 ∈ ℕ0 ((𝐷𝐹) − (𝐷𝐺)) < 𝑑 → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
3527, 34mpd 15 . . 3 ((𝜑𝐹0 ) → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑))
36 0nn0 12539 . . . 4 0 ∈ ℕ0
3710, 11, 12deg1z 26141 . . . . . 6 (𝑅 ∈ Ring → (𝐷0 ) = -∞)
385, 37syl 17 . . . . 5 (𝜑 → (𝐷0 ) = -∞)
39 0re 11261 . . . . . . 7 0 ∈ ℝ
40 readdcl 11236 . . . . . . 7 (((𝐷𝐺) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐷𝐺) + 0) ∈ ℝ)
4121, 39, 40sylancl 586 . . . . . 6 (𝜑 → ((𝐷𝐺) + 0) ∈ ℝ)
4241mnfltd 13164 . . . . 5 (𝜑 → -∞ < ((𝐷𝐺) + 0))
4338, 42eqbrtrd 5170 . . . 4 (𝜑 → (𝐷0 ) < ((𝐷𝐺) + 0))
44 oveq2 7439 . . . . . 6 (𝑑 = 0 → ((𝐷𝐺) + 𝑑) = ((𝐷𝐺) + 0))
4544breq2d 5160 . . . . 5 (𝑑 = 0 → ((𝐷0 ) < ((𝐷𝐺) + 𝑑) ↔ (𝐷0 ) < ((𝐷𝐺) + 0)))
4645rspcev 3622 . . . 4 ((0 ∈ ℕ0 ∧ (𝐷0 ) < ((𝐷𝐺) + 0)) → ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑))
4736, 43, 46sylancr 587 . . 3 (𝜑 → ∃𝑑 ∈ ℕ0 (𝐷0 ) < ((𝐷𝐺) + 𝑑))
483, 35, 47pm2.61ne 3025 . 2 (𝜑 → ∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑))
49 fveq2 6907 . . . . . 6 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
5049breq1d 5158 . . . . 5 (𝑓 = 𝐹 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) ↔ (𝐷𝐹) < ((𝐷𝐺) + 𝑑)))
51 fvoveq1 7454 . . . . . . 7 (𝑓 = 𝐹 → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘(𝐹 (𝐺 𝑞))))
5251breq1d 5158 . . . . . 6 (𝑓 = 𝐹 → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
5352rexbidv 3177 . . . . 5 (𝑓 = 𝐹 → (∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
5450, 53imbi12d 344 . . . 4 (𝑓 = 𝐹 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))))
55 oveq2 7439 . . . . . . . . . 10 (𝑎 = 0 → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + 0))
5655breq2d 5160 . . . . . . . . 9 (𝑎 = 0 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + 0)))
5756imbi1d 341 . . . . . . . 8 (𝑎 = 0 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
5857ralbidv 3176 . . . . . . 7 (𝑎 = 0 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
5958imbi2d 340 . . . . . 6 (𝑎 = 0 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
60 oveq2 7439 . . . . . . . . . 10 (𝑎 = 𝑑 → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + 𝑑))
6160breq2d 5160 . . . . . . . . 9 (𝑎 = 𝑑 → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + 𝑑)))
6261imbi1d 341 . . . . . . . 8 (𝑎 = 𝑑 → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6362ralbidv 3176 . . . . . . 7 (𝑎 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6463imbi2d 340 . . . . . 6 (𝑎 = 𝑑 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
65 oveq2 7439 . . . . . . . . . 10 (𝑎 = (𝑑 + 1) → ((𝐷𝐺) + 𝑎) = ((𝐷𝐺) + (𝑑 + 1)))
6665breq2d 5160 . . . . . . . . 9 (𝑎 = (𝑑 + 1) → ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) ↔ (𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1))))
6766imbi1d 341 . . . . . . . 8 (𝑎 = (𝑑 + 1) → (((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6867ralbidv 3176 . . . . . . 7 (𝑎 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
6968imbi2d 340 . . . . . 6 (𝑎 = (𝑑 + 1) → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑎) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) ↔ (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
7011ply1ring 22265 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
715, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
7213, 12ring0cl 20281 . . . . . . . . . . 11 (𝑃 ∈ Ring → 0𝐵)
7371, 72syl 17 . . . . . . . . . 10 (𝜑0𝐵)
7473ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → 0𝐵)
75 ply1divalg.t . . . . . . . . . . . . . . . . 17 = (.r𝑃)
7613, 75, 12ringrz 20308 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → (𝐺 0 ) = 0 )
7771, 17, 76syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 0 ) = 0 )
7877oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → (𝑓 (𝐺 0 )) = (𝑓 0 ))
7978adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → (𝑓 (𝐺 0 )) = (𝑓 0 ))
80 ringgrp 20256 . . . . . . . . . . . . . . 15 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
8171, 80syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ Grp)
82 ply1divalg.m . . . . . . . . . . . . . . 15 = (-g𝑃)
8313, 12, 82grpsubid1 19056 . . . . . . . . . . . . . 14 ((𝑃 ∈ Grp ∧ 𝑓𝐵) → (𝑓 0 ) = 𝑓)
8481, 83sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → (𝑓 0 ) = 𝑓)
8579, 84eqtr2d 2776 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑓 = (𝑓 (𝐺 0 )))
8685fveq2d 6911 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝐷𝑓) = (𝐷‘(𝑓 (𝐺 0 ))))
8720nn0cnd 12587 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝐺) ∈ ℂ)
8887addridd 11459 . . . . . . . . . . . 12 (𝜑 → ((𝐷𝐺) + 0) = (𝐷𝐺))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → ((𝐷𝐺) + 0) = (𝐷𝐺))
9086, 89breq12d 5161 . . . . . . . . . 10 ((𝜑𝑓𝐵) → ((𝐷𝑓) < ((𝐷𝐺) + 0) ↔ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)))
9190biimpa 476 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺))
92 oveq2 7439 . . . . . . . . . . . . 13 (𝑞 = 0 → (𝐺 𝑞) = (𝐺 0 ))
9392oveq2d 7447 . . . . . . . . . . . 12 (𝑞 = 0 → (𝑓 (𝐺 𝑞)) = (𝑓 (𝐺 0 )))
9493fveq2d 6911 . . . . . . . . . . 11 (𝑞 = 0 → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘(𝑓 (𝐺 0 ))))
9594breq1d 5158 . . . . . . . . . 10 (𝑞 = 0 → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)))
9695rspcev 3622 . . . . . . . . 9 (( 0𝐵 ∧ (𝐷‘(𝑓 (𝐺 0 ))) < (𝐷𝐺)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
9774, 91, 96syl2anc 584 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ (𝐷𝑓) < ((𝐷𝐺) + 0)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
9897ex 412 . . . . . . 7 ((𝜑𝑓𝐵) → ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
9998ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 0) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
100 nn0addcl 12559 . . . . . . . . . . . . . . . . . 18 (((𝐷𝐺) ∈ ℕ0𝑑 ∈ ℕ0) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
10120, 100sylan 580 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
102101adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
1035ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → 𝑅 ∈ Ring)
104 simprl 771 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → 𝑔𝐵)
10510, 11, 13deg1cl 26137 . . . . . . . . . . . . . . . . . . . 20 (𝑔𝐵 → (𝐷𝑔) ∈ (ℕ0 ∪ {-∞}))
10620ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℕ0)
107 peano2nn0 12564 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
108107ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝑑 + 1) ∈ ℕ0)
109106, 108nn0addcld 12589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + (𝑑 + 1)) ∈ ℕ0)
110109nn0zd 12637 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + (𝑑 + 1)) ∈ ℤ)
111 degltlem1 26126 . . . . . . . . . . . . . . . . . . . 20 (((𝐷𝑔) ∈ (ℕ0 ∪ {-∞}) ∧ ((𝐷𝐺) + (𝑑 + 1)) ∈ ℤ) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
112105, 110, 111syl2an2 686 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
113112biimpd 229 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1)))
114113impr 454 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷𝑔) ≤ (((𝐷𝐺) + (𝑑 + 1)) − 1))
11520adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℕ0)
116115nn0cnd 12587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → (𝐷𝐺) ∈ ℂ)
117 nn0cn 12534 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ ℕ0𝑑 ∈ ℂ)
118117adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ ℕ0) → 𝑑 ∈ ℂ)
119 peano2cn 11431 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ℂ → (𝑑 + 1) ∈ ℂ)
120118, 119syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → (𝑑 + 1) ∈ ℂ)
121 1cnd 11254 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → 1 ∈ ℂ)
122116, 120, 121addsubassd 11638 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ0) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + ((𝑑 + 1) − 1)))
123 ax-1cn 11211 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
124 pncan 11512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑑 + 1) − 1) = 𝑑)
125118, 123, 124sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ0) → ((𝑑 + 1) − 1) = 𝑑)
126125oveq2d 7447 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐺) + ((𝑑 + 1) − 1)) = ((𝐷𝐺) + 𝑑))
127122, 126eqtrd 2775 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ0) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + 𝑑))
128127adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (((𝐷𝐺) + (𝑑 + 1)) − 1) = ((𝐷𝐺) + 𝑑))
129114, 128breqtrd 5174 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷𝑔) ≤ ((𝐷𝐺) + 𝑑))
13071ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑃 ∈ Ring)
13117ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝐺𝐵)
1325ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑅 ∈ Ring)
133 ply1divex.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐼𝐾)
134133ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝐼𝐾)
135 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑔) = (coe1𝑔)
136 ply1divex.k . . . . . . . . . . . . . . . . . . . . . . 23 𝐾 = (Base‘𝑅)
137135, 13, 11, 136coe1f 22229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔𝐵 → (coe1𝑔):ℕ0𝐾)
138137adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (coe1𝑔):ℕ0𝐾)
139 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑑 ∈ ℕ0)
140106, 139nn0addcld 12589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + 𝑑) ∈ ℕ0)
141138, 140ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾)
142 ply1divex.u . . . . . . . . . . . . . . . . . . . . 21 · = (.r𝑅)
143136, 142ringcl 20268 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝐼𝐾 ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾) → (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾)
144132, 134, 141, 143syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾)
145 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (var1𝑅) = (var1𝑅)
146 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
147 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘𝑃) = (mulGrp‘𝑃)
148 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
149136, 11, 145, 146, 147, 148, 13ply1tmcl 22291 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾𝑑 ∈ ℕ0) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
150132, 144, 139, 149syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
15113, 75ringcl 20268 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Ring ∧ 𝐺𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
152130, 131, 150, 151syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
153152adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
154106nn0red 12586 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℝ)
155154leidd 11827 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ≤ (𝐷𝐺))
15610, 136, 11, 145, 146, 147, 148deg1tmle 26172 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) ∈ 𝐾𝑑 ∈ ℕ0) → (𝐷‘((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ≤ 𝑑)
157132, 144, 139, 156syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷‘((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ≤ 𝑑)
15811, 10, 132, 13, 75, 131, 150, 106, 139, 155, 157deg1mulle2 26163 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ≤ ((𝐷𝐺) + 𝑑))
159158adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ≤ ((𝐷𝐺) + 𝑑))
160 eqid 2735 . . . . . . . . . . . . . . . 16 (coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = (coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))
161 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (0g𝑅) = (0g𝑅)
162161, 136, 11, 145, 146, 147, 148, 13, 75, 142, 131, 132, 144, 139, 106coe1tmmul2fv 22297 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘(𝑑 + (𝐷𝐺))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
163106nn0cnd 12587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝐷𝐺) ∈ ℂ)
164117ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑑 ∈ ℂ)
165163, 164addcomd 11461 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((𝐷𝐺) + 𝑑) = (𝑑 + (𝐷𝐺)))
166165fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘(𝑑 + (𝐷𝐺))))
167 ply1divex.g3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) · 𝐼) = 1 )
168167oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))))
169168ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))))
170 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (coe1𝐺) = (coe1𝐺)
171170, 13, 11, 136coe1f 22229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
17217, 171syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (coe1𝐺):ℕ0𝐾)
173172ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (coe1𝐺):ℕ0𝐾)
174173, 106ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐾)
175136, 142ringass 20271 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ (((coe1𝐺)‘(𝐷𝐺)) ∈ 𝐾𝐼𝐾 ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾)) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
176132, 174, 134, 141, 175syl13anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((((coe1𝐺)‘(𝐷𝐺)) · 𝐼) · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
177 ply1divex.o . . . . . . . . . . . . . . . . . . . . 21 1 = (1r𝑅)
178136, 142, 177ringlidm 20283 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) ∈ 𝐾) → ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))
179132, 141, 178syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ( 1 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑))) = ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))
180169, 176, 1793eqtr3rd 2784 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = (((coe1𝐺)‘(𝐷𝐺)) · (𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))))
181162, 166, 1803eqtr4rd 2786 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)))
182181adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((coe1𝑔)‘((𝐷𝐺) + 𝑑)) = ((coe1‘(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))‘((𝐷𝐺) + 𝑑)))
18310, 11, 13, 82, 102, 103, 104, 129, 153, 159, 135, 160, 182deg1sublt 26164 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑))
184183adantlrr 721 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑))
185 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (𝐷𝑓) = (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
186185breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) ↔ (𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑)))
187 fvoveq1 7454 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (𝐷‘(𝑓 (𝐺 𝑞))) = (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))))
188187breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → ((𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
189188rexbidv 3177 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
190186, 189imbi12d 344 . . . . . . . . . . . . . . 15 (𝑓 = (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) → (((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) ↔ ((𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺))))
191 simplrr 778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
19281ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑃 ∈ Grp)
193 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → 𝑔𝐵)
19413, 82grpsubcl 19051 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Grp ∧ 𝑔𝐵 ∧ (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
195192, 193, 152, 194syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
196195adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
197196adantlrr 721 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) ∈ 𝐵)
198190, 191, 197rspcdva 3623 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ((𝐷‘(𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺)))
199184, 198mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺))
20071ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
201 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑞𝐵)
202150adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)
203 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (+g𝑃) = (+g𝑃)
20413, 203ringacl 20292 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Ring ∧ 𝑞𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵) → (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
205200, 201, 202, 204syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
20681ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
207 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝑔𝐵)
208152adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵)
20917ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → 𝐺𝐵)
21013, 75ringcl 20268 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ 𝐺𝐵𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
211200, 209, 201, 210syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 𝑞) ∈ 𝐵)
21213, 203, 82grpsubsub4 19064 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ Grp ∧ (𝑔𝐵 ∧ (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ (𝐺 𝑞) ∈ 𝐵)) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
213206, 207, 208, 211, 212syl13anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
21413, 203, 75ringdi 20278 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ (𝐺𝐵𝑞𝐵 ∧ ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ 𝐵)) → (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
215200, 209, 201, 202, 214syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) = ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
216215oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))) = (𝑔 ((𝐺 𝑞)(+g𝑃)(𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
217213, 216eqtr4d 2778 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞)) = (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
218217fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) = (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))))
219218breq1d 5158 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) ↔ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
220219biimpd 229 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
221 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝐺 𝑟) = (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))
222221oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝑔 (𝐺 𝑟)) = (𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
223222fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → (𝐷‘(𝑔 (𝐺 𝑟))) = (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))))
224223breq1d 5158 . . . . . . . . . . . . . . . . . 18 (𝑟 = (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) → ((𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)))
225224rspcev 3622 . . . . . . . . . . . . . . . . 17 (((𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ 𝐵 ∧ (𝐷‘(𝑔 (𝐺 (𝑞(+g𝑃)((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))))) < (𝐷𝐺)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺))
226205, 220, 225syl6an 684 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) ∧ 𝑞𝐵) → ((𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
227226rexlimdva 3153 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑔𝐵) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
228227adantrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
229228adantlrr 721 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → (∃𝑞𝐵 (𝐷‘((𝑔 (𝐺 ((𝐼 · ((coe1𝑔)‘((𝐷𝐺) + 𝑑)))( ·𝑠𝑃)(𝑑(.g‘(mulGrp‘𝑃))(var1𝑅))))) (𝐺 𝑞))) < (𝐷𝐺) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
230199, 229mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ (𝑔𝐵 ∧ (𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)))) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺))
231230expr 456 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) ∧ 𝑔𝐵) → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
232231ralrimiva 3144 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) → ∀𝑔𝐵 ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)))
233 fveq2 6907 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (𝐷𝑔) = (𝐷𝑓))
234233breq1d 5158 . . . . . . . . . . . 12 (𝑔 = 𝑓 → ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) ↔ (𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1))))
235 fvoveq1 7454 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → (𝐷‘(𝑔 (𝐺 𝑟))) = (𝐷‘(𝑓 (𝐺 𝑟))))
236235breq1d 5158 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → ((𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺)))
237236rexbidv 3177 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → (∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑟𝐵 (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺)))
238 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑞 → (𝐺 𝑟) = (𝐺 𝑞))
239238oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑞 → (𝑓 (𝐺 𝑟)) = (𝑓 (𝐺 𝑞)))
240239fveq2d 6911 . . . . . . . . . . . . . . 15 (𝑟 = 𝑞 → (𝐷‘(𝑓 (𝐺 𝑟))) = (𝐷‘(𝑓 (𝐺 𝑞))))
241240breq1d 5158 . . . . . . . . . . . . . 14 (𝑟 = 𝑞 → ((𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺) ↔ (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
242241cbvrexvw 3236 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝐷‘(𝑓 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))
243237, 242bitrdi 287 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺) ↔ ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
244234, 243imbi12d 344 . . . . . . . . . . 11 (𝑔 = 𝑓 → (((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)) ↔ ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
245244cbvralvw 3235 . . . . . . . . . 10 (∀𝑔𝐵 ((𝐷𝑔) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑟𝐵 (𝐷‘(𝑔 (𝐺 𝑟))) < (𝐷𝐺)) ↔ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
246232, 245sylib 218 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
247246exp32 420 . . . . . . . 8 (𝜑 → (𝑑 ∈ ℕ0 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
248247com12 32 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
249248a2d 29 . . . . . 6 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))) → (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + (𝑑 + 1)) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))))
25059, 64, 69, 64, 99, 249nn0ind 12711 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺))))
251250impcom 407 . . . 4 ((𝜑𝑑 ∈ ℕ0) → ∀𝑓𝐵 ((𝐷𝑓) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝑓 (𝐺 𝑞))) < (𝐷𝐺)))
2527adantr 480 . . . 4 ((𝜑𝑑 ∈ ℕ0) → 𝐹𝐵)
25354, 251, 252rspcdva 3623 . . 3 ((𝜑𝑑 ∈ ℕ0) → ((𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
254253rexlimdva 3153 . 2 (𝜑 → (∃𝑑 ∈ ℕ0 (𝐷𝐹) < ((𝐷𝐺) + 𝑑) → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
25548, 254mpd 15 1 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cun 3961  wss 3963  {csn 4631   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  -∞cmnf 11291   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611  Basecbs 17245  +gcplusg 17298  .rcmulr 17299   ·𝑠 cvsca 17302  0gc0g 17486  Grpcgrp 18964  -gcsg 18966  .gcmg 19098  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  var1cv1 22193  Poly1cpl1 22194  coe1cco1 22195  deg1cdg1 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-cnfld 21383  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mdeg 26109  df-deg1 26110
This theorem is referenced by:  ply1divalg  26192
  Copyright terms: Public domain W3C validator