Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omedm Structured version   Visualization version   GIF version

Theorem omedm 46420
Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
omedm (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)

Proof of Theorem omedm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isome 46415 . . . 4 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
21ibi 267 . . 3 (𝑂 ∈ OutMeas → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
32simplld 767 . 2 (𝑂 ∈ OutMeas → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
43simplrd 769 1 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  dom cdm 5700  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  cdom 9001  0cc0 11184  +∞cpnf 11321  cle 11325  [,]cicc 13410  Σ^csumge0 46283  OutMeascome 46410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ome 46411
This theorem is referenced by:  caragenss  46425  omeunile  46426
  Copyright terms: Public domain W3C validator