Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omedm Structured version   Visualization version   GIF version

Theorem omedm 46528
Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
omedm (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)

Proof of Theorem omedm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isome 46523 . . . 4 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
21ibi 267 . . 3 (𝑂 ∈ OutMeas → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
32simplld 767 . 2 (𝑂 ∈ OutMeas → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
43simplrd 769 1 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  dom cdm 5654  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  0cc0 11129  +∞cpnf 11266  cle 11270  [,]cicc 13365  Σ^csumge0 46391  OutMeascome 46518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ome 46519
This theorem is referenced by:  caragenss  46533  omeunile  46534
  Copyright terms: Public domain W3C validator