Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omedm Structured version   Visualization version   GIF version

Theorem omedm 46504
Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
omedm (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)

Proof of Theorem omedm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isome 46499 . . . 4 (𝑂 ∈ OutMeas → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
21ibi 267 . . 3 (𝑂 ∈ OutMeas → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
32simplld 767 . 2 (𝑂 ∈ OutMeas → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
43simplrd 769 1 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  c0 4299  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  0cc0 11075  +∞cpnf 11212  cle 11216  [,]cicc 13316  Σ^csumge0 46367  OutMeascome 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ome 46495
This theorem is referenced by:  caragenss  46509  omeunile  46510
  Copyright terms: Public domain W3C validator