![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenss | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenss.1 | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenss | ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3941 | . . 3 ⊢ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂) |
3 | caragenss.1 | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂)) |
5 | caragenval 42236 | . . . 4 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
6 | 4, 5 | eqtrd 2809 | . . 3 ⊢ (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
7 | omedm 42242 | . . 3 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
8 | 6, 7 | sseq12d 3885 | . 2 ⊢ (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂)) |
9 | 2, 8 | mpbird 249 | 1 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∀wral 3083 {crab 3087 ∖ cdif 3821 ∩ cin 3823 ⊆ wss 3824 𝒫 cpw 4417 ∪ cuni 4709 dom cdm 5404 ‘cfv 6186 (class class class)co 6975 +𝑒 cxad 12321 OutMeascome 42232 CaraGenccaragen 42234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-fv 6194 df-ov 6978 df-ome 42233 df-caragen 42235 |
This theorem is referenced by: caragensspw 42252 caragenuni 42254 caragendifcl 42257 caratheodorylem1 42269 caratheodorylem2 42270 dmvon 42349 voncmpl 42364 vonmblss 42383 |
Copyright terms: Public domain | W3C validator |