Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenss Structured version   Visualization version   GIF version

Theorem caragenss 42247
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
caragenss.1 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenss (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)

Proof of Theorem caragenss
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3941 . . 3 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
21a1i 11 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂)
3 caragenss.1 . . . . 5 𝑆 = (CaraGen‘𝑂)
43a1i 11 . . . 4 (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂))
5 caragenval 42236 . . . 4 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
64, 5eqtrd 2809 . . 3 (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
7 omedm 42242 . . 3 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
86, 7sseq12d 3885 . 2 (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂))
92, 8mpbird 249 1 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  wral 3083  {crab 3087  cdif 3821  cin 3823  wss 3824  𝒫 cpw 4417   cuni 4709  dom cdm 5404  cfv 6186  (class class class)co 6975   +𝑒 cxad 12321  OutMeascome 42232  CaraGenccaragen 42234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-fv 6194  df-ov 6978  df-ome 42233  df-caragen 42235
This theorem is referenced by:  caragensspw  42252  caragenuni  42254  caragendifcl  42257  caratheodorylem1  42269  caratheodorylem2  42270  dmvon  42349  voncmpl  42364  vonmblss  42383
  Copyright terms: Public domain W3C validator