Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenss Structured version   Visualization version   GIF version

Theorem caragenss 45220
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
caragenss.1 𝑆 = (CaraGenβ€˜π‘‚)
Assertion
Ref Expression
caragenss (𝑂 ∈ OutMeas β†’ 𝑆 βŠ† dom 𝑂)

Proof of Theorem caragenss
Dummy variables π‘Ž 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4078 . . 3 {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} βŠ† 𝒫 βˆͺ dom 𝑂
21a1i 11 . 2 (𝑂 ∈ OutMeas β†’ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} βŠ† 𝒫 βˆͺ dom 𝑂)
3 caragenss.1 . . . . 5 𝑆 = (CaraGenβ€˜π‘‚)
43a1i 11 . . . 4 (𝑂 ∈ OutMeas β†’ 𝑆 = (CaraGenβ€˜π‘‚))
5 caragenval 45209 . . . 4 (𝑂 ∈ OutMeas β†’ (CaraGenβ€˜π‘‚) = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
64, 5eqtrd 2773 . . 3 (𝑂 ∈ OutMeas β†’ 𝑆 = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
7 omedm 45215 . . 3 (𝑂 ∈ OutMeas β†’ dom 𝑂 = 𝒫 βˆͺ dom 𝑂)
86, 7sseq12d 4016 . 2 (𝑂 ∈ OutMeas β†’ (𝑆 βŠ† dom 𝑂 ↔ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} βŠ† 𝒫 βˆͺ dom 𝑂))
92, 8mpbird 257 1 (𝑂 ∈ OutMeas β†’ 𝑆 βŠ† dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βˆ– cdif 3946   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  dom cdm 5677  β€˜cfv 6544  (class class class)co 7409   +𝑒 cxad 13090  OutMeascome 45205  CaraGenccaragen 45207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-ome 45206  df-caragen 45208
This theorem is referenced by:  caragensspw  45225  caragenuni  45227  caragendifcl  45230  caratheodorylem1  45242  caratheodorylem2  45243  dmvon  45322  voncmpl  45337  vonmblss  45356
  Copyright terms: Public domain W3C validator