Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenss | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenss.1 | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenss | ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4025 | . . 3 ⊢ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂) |
3 | caragenss.1 | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂)) |
5 | caragenval 44376 | . . . 4 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
6 | 4, 5 | eqtrd 2776 | . . 3 ⊢ (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
7 | omedm 44382 | . . 3 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
8 | 6, 7 | sseq12d 3965 | . 2 ⊢ (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂)) |
9 | 2, 8 | mpbird 256 | 1 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4547 ∪ cuni 4852 dom cdm 5620 ‘cfv 6479 (class class class)co 7337 +𝑒 cxad 12947 OutMeascome 44372 CaraGenccaragen 44374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-ome 44373 df-caragen 44375 |
This theorem is referenced by: caragensspw 44392 caragenuni 44394 caragendifcl 44397 caratheodorylem1 44409 caratheodorylem2 44410 dmvon 44489 voncmpl 44504 vonmblss 44523 |
Copyright terms: Public domain | W3C validator |