Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenss Structured version   Visualization version   GIF version

Theorem caragenss 46533
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
caragenss.1 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenss (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)

Proof of Theorem caragenss
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . 3 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
21a1i 11 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂)
3 caragenss.1 . . . . 5 𝑆 = (CaraGen‘𝑂)
43a1i 11 . . . 4 (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂))
5 caragenval 46522 . . . 4 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
64, 5eqtrd 2770 . . 3 (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
7 omedm 46528 . . 3 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
86, 7sseq12d 3992 . 2 (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂))
92, 8mpbird 257 1 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  dom cdm 5654  cfv 6531  (class class class)co 7405   +𝑒 cxad 13126  OutMeascome 46518  CaraGenccaragen 46520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-ome 46519  df-caragen 46521
This theorem is referenced by:  caragensspw  46538  caragenuni  46540  caragendifcl  46543  caratheodorylem1  46555  caratheodorylem2  46556  dmvon  46635  voncmpl  46650  vonmblss  46669
  Copyright terms: Public domain W3C validator