| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenss | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenss.1 | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragenss | ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4055 | . . 3 ⊢ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂) |
| 3 | caragenss.1 | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂)) |
| 5 | caragenval 46522 | . . . 4 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
| 6 | 4, 5 | eqtrd 2770 | . . 3 ⊢ (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
| 7 | omedm 46528 | . . 3 ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | |
| 8 | 6, 7 | sseq12d 3992 | . 2 ⊢ (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ⊆ 𝒫 ∪ dom 𝑂)) |
| 9 | 2, 8 | mpbird 257 | 1 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 +𝑒 cxad 13126 OutMeascome 46518 CaraGenccaragen 46520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-ome 46519 df-caragen 46521 |
| This theorem is referenced by: caragensspw 46538 caragenuni 46540 caragendifcl 46543 caratheodorylem1 46555 caratheodorylem2 46556 dmvon 46635 voncmpl 46650 vonmblss 46669 |
| Copyright terms: Public domain | W3C validator |