Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenss Structured version   Visualization version   GIF version

Theorem caragenss 46519
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
caragenss.1 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenss (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)

Proof of Theorem caragenss
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4080 . . 3 {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂
21a1i 11 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂)
3 caragenss.1 . . . . 5 𝑆 = (CaraGen‘𝑂)
43a1i 11 . . . 4 (𝑂 ∈ OutMeas → 𝑆 = (CaraGen‘𝑂))
5 caragenval 46508 . . . 4 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
64, 5eqtrd 2777 . . 3 (𝑂 ∈ OutMeas → 𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
7 omedm 46514 . . 3 (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂)
86, 7sseq12d 4017 . 2 (𝑂 ∈ OutMeas → (𝑆 ⊆ dom 𝑂 ↔ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ⊆ 𝒫 dom 𝑂))
92, 8mpbird 257 1 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cdif 3948  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  dom cdm 5685  cfv 6561  (class class class)co 7431   +𝑒 cxad 13152  OutMeascome 46504  CaraGenccaragen 46506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-ome 46505  df-caragen 46507
This theorem is referenced by:  caragensspw  46524  caragenuni  46526  caragendifcl  46529  caratheodorylem1  46541  caratheodorylem2  46542  dmvon  46621  voncmpl  46636  vonmblss  46655
  Copyright terms: Public domain W3C validator