| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omssnlim | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omssnlim | ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7892 | . 2 ⊢ ω ⊆ On | |
| 2 | nnlim 7902 | . . 3 ⊢ (𝑥 ∈ ω → ¬ Lim 𝑥) | |
| 3 | 2 | rgen 3062 | . 2 ⊢ ∀𝑥 ∈ ω ¬ Lim 𝑥 |
| 4 | ssrab 4072 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥)) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wral 3060 {crab 3435 ⊆ wss 3950 Oncon0 6383 Lim wlim 6384 ωcom 7888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-lim 6388 df-om 7889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |