| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omssnlim | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omssnlim | ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7803 | . 2 ⊢ ω ⊆ On | |
| 2 | nnlim 7813 | . . 3 ⊢ (𝑥 ∈ ω → ¬ Lim 𝑥) | |
| 3 | 2 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ω ¬ Lim 𝑥 |
| 4 | ssrab 4024 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥)) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wral 3044 {crab 3394 ⊆ wss 3903 Oncon0 6307 Lim wlim 6308 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-om 7800 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |