MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Structured version   Visualization version   GIF version

Theorem omssnlim 7903
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 7892 . 2 ω ⊆ On
2 nnlim 7902 . . 3 (𝑥 ∈ ω → ¬ Lim 𝑥)
32rgen 3062 . 2 𝑥 ∈ ω ¬ Lim 𝑥
4 ssrab 4072 . 2 (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥))
51, 3, 4mpbir2an 711 1 ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wral 3060  {crab 3435  wss 3950  Oncon0 6383  Lim wlim 6384  ωcom 7888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387  df-lim 6388  df-om 7889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator