![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omssnlim | Structured version Visualization version GIF version |
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omssnlim | ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7807 | . 2 ⊢ ω ⊆ On | |
2 | nnlim 7817 | . . 3 ⊢ (𝑥 ∈ ω → ¬ Lim 𝑥) | |
3 | 2 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ ω ¬ Lim 𝑥 |
4 | ssrab 4031 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥)) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wral 3061 {crab 3406 ⊆ wss 3911 Oncon0 6318 Lim wlim 6319 ωcom 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-ord 6321 df-on 6322 df-lim 6323 df-om 7804 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |