MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Structured version   Visualization version   GIF version

Theorem omssnlim 7818
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 7807 . 2 ω ⊆ On
2 nnlim 7817 . . 3 (𝑥 ∈ ω → ¬ Lim 𝑥)
32rgen 3063 . 2 𝑥 ∈ ω ¬ Lim 𝑥
4 ssrab 4031 . 2 (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥))
51, 3, 4mpbir2an 710 1 ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wral 3061  {crab 3406  wss 3911  Oncon0 6318  Lim wlim 6319  ωcom 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-ord 6321  df-on 6322  df-lim 6323  df-om 7804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator