![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omssnlim | Structured version Visualization version GIF version |
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omssnlim | ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7891 | . 2 ⊢ ω ⊆ On | |
2 | nnlim 7901 | . . 3 ⊢ (𝑥 ∈ ω → ¬ Lim 𝑥) | |
3 | 2 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ ω ¬ Lim 𝑥 |
4 | ssrab 4083 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥)) | |
5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wral 3059 {crab 3433 ⊆ wss 3963 Oncon0 6386 Lim wlim 6387 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-om 7888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |