| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omssnlim | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omssnlim | ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7800 | . 2 ⊢ ω ⊆ On | |
| 2 | nnlim 7810 | . . 3 ⊢ (𝑥 ∈ ω → ¬ Lim 𝑥) | |
| 3 | 2 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ ω ¬ Lim 𝑥 |
| 4 | ssrab 4018 | . 2 ⊢ (ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ⊆ On ∧ ∀𝑥 ∈ ω ¬ Lim 𝑥)) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wral 3047 {crab 3395 ⊆ wss 3897 Oncon0 6306 Lim wlim 6307 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-om 7797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |