Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexgt Structured version   Visualization version   GIF version

Theorem onexgt 43347
Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexgt
StepHypRef Expression
1 onsuc 7752 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 sucidg 6397 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
3 eleq2 2822 . . 3 (𝑥 = suc 𝐴 → (𝐴𝑥𝐴 ∈ suc 𝐴))
43rspcev 3574 . 2 ((suc 𝐴 ∈ On ∧ 𝐴 ∈ suc 𝐴) → ∃𝑥 ∈ On 𝐴𝑥)
51, 2, 4syl2anc 584 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wrex 3058  Oncon0 6314  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318  df-suc 6320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator