Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexgt Structured version   Visualization version   GIF version

Theorem onexgt 43236
Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexgt
StepHypRef Expression
1 onsuc 7790 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 sucidg 6418 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
3 eleq2 2818 . . 3 (𝑥 = suc 𝐴 → (𝐴𝑥𝐴 ∈ suc 𝐴))
43rspcev 3591 . 2 ((suc 𝐴 ∈ On ∧ 𝐴 ∈ suc 𝐴) → ∃𝑥 ∈ On 𝐴𝑥)
51, 2, 4syl2anc 584 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3054  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator