Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexgt Structured version   Visualization version   GIF version

Theorem onexgt 43228
Description: For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexgt
StepHypRef Expression
1 onsuc 7830 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 sucidg 6466 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
3 eleq2 2827 . . 3 (𝑥 = suc 𝐴 → (𝐴𝑥𝐴 ∈ suc 𝐴))
43rspcev 3621 . 2 ((suc 𝐴 ∈ On ∧ 𝐴 ∈ suc 𝐴) → ∃𝑥 ∈ On 𝐴𝑥)
51, 2, 4syl2anc 584 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wrex 3067  Oncon0 6385  suc csuc 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-ord 6388  df-on 6389  df-suc 6391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator