Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexomgt Structured version   Visualization version   GIF version

Theorem onexomgt 43214
Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexomgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexomgt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9542 . . 3 ω ∈ On
2 peano1 7822 . . . 4 ∅ ∈ ω
32ne0ii 4295 . . 3 ω ≠ ∅
4 omeu 8503 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
51, 3, 4mp3an13 1454 . 2 (𝐴 ∈ On → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
6 euex 2570 . . 3 (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
7 onsuc 7746 . . . . . . . . . 10 (𝑎 ∈ On → suc 𝑎 ∈ On)
87adantr 480 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → suc 𝑎 ∈ On)
9 simpr 484 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) = 𝐴)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑏 ∈ ω)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
12 omcl 8454 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
131, 11, 12sylancr 587 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o 𝑎) ∈ On)
14 oaordi 8464 . . . . . . . . . . . . . 14 ((ω ∈ On ∧ (ω ·o 𝑎) ∈ On) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
151, 13, 14sylancr 587 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
1610, 15mpd 15 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω))
17 omsuc 8444 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
181, 11, 17sylancr 587 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
1916, 18eleqtrrd 2831 . . . . . . . . . . 11 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
2019adantr 480 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
219, 20eqeltrrd 2829 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → 𝐴 ∈ (ω ·o suc 𝑎))
22 oveq2 7357 . . . . . . . . . . 11 (𝑥 = suc 𝑎 → (ω ·o 𝑥) = (ω ·o suc 𝑎))
2322eleq2d 2814 . . . . . . . . . 10 (𝑥 = suc 𝑎 → (𝐴 ∈ (ω ·o 𝑥) ↔ 𝐴 ∈ (ω ·o suc 𝑎)))
2423rspcev 3577 . . . . . . . . 9 ((suc 𝑎 ∈ On ∧ 𝐴 ∈ (ω ·o suc 𝑎)) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
258, 21, 24syl2an2r 685 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
2625ex 412 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (((ω ·o 𝑎) +o 𝑏) = 𝐴 → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2726adantld 490 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2827a1i 11 . . . . 5 (𝐴 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))))
2928rexlimdvv 3185 . . . 4 (𝐴 ∈ On → (∃𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
3029exlimdv 1933 . . 3 (𝐴 ∈ On → (∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
316, 30syl5 34 . 2 (𝐴 ∈ On → (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
325, 31mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  wne 2925  wrex 3053  c0 4284  cop 4583  Oncon0 6307  suc csuc 6309  (class class class)co 7349  ωcom 7799   +o coa 8385   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393
This theorem is referenced by:  onexlimgt  43216
  Copyright terms: Public domain W3C validator