Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexomgt Structured version   Visualization version   GIF version

Theorem onexomgt 43282
Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexomgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexomgt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9536 . . 3 ω ∈ On
2 peano1 7819 . . . 4 ∅ ∈ ω
32ne0ii 4291 . . 3 ω ≠ ∅
4 omeu 8500 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
51, 3, 4mp3an13 1454 . 2 (𝐴 ∈ On → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
6 euex 2572 . . 3 (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
7 onsuc 7743 . . . . . . . . . 10 (𝑎 ∈ On → suc 𝑎 ∈ On)
87adantr 480 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → suc 𝑎 ∈ On)
9 simpr 484 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) = 𝐴)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑏 ∈ ω)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
12 omcl 8451 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
131, 11, 12sylancr 587 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o 𝑎) ∈ On)
14 oaordi 8461 . . . . . . . . . . . . . 14 ((ω ∈ On ∧ (ω ·o 𝑎) ∈ On) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
151, 13, 14sylancr 587 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
1610, 15mpd 15 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω))
17 omsuc 8441 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
181, 11, 17sylancr 587 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
1916, 18eleqtrrd 2834 . . . . . . . . . . 11 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
2019adantr 480 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
219, 20eqeltrrd 2832 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → 𝐴 ∈ (ω ·o suc 𝑎))
22 oveq2 7354 . . . . . . . . . . 11 (𝑥 = suc 𝑎 → (ω ·o 𝑥) = (ω ·o suc 𝑎))
2322eleq2d 2817 . . . . . . . . . 10 (𝑥 = suc 𝑎 → (𝐴 ∈ (ω ·o 𝑥) ↔ 𝐴 ∈ (ω ·o suc 𝑎)))
2423rspcev 3572 . . . . . . . . 9 ((suc 𝑎 ∈ On ∧ 𝐴 ∈ (ω ·o suc 𝑎)) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
258, 21, 24syl2an2r 685 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
2625ex 412 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (((ω ·o 𝑎) +o 𝑏) = 𝐴 → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2726adantld 490 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2827a1i 11 . . . . 5 (𝐴 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))))
2928rexlimdvv 3188 . . . 4 (𝐴 ∈ On → (∃𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
3029exlimdv 1934 . . 3 (𝐴 ∈ On → (∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
316, 30syl5 34 . 2 (𝐴 ∈ On → (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
325, 31mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  wrex 3056  c0 4280  cop 4579  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by:  onexlimgt  43284
  Copyright terms: Public domain W3C validator