Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexomgt Structured version   Visualization version   GIF version

Theorem onexomgt 43202
Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexomgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexomgt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9715 . . 3 ω ∈ On
2 peano1 7927 . . . 4 ∅ ∈ ω
32ne0ii 4367 . . 3 ω ≠ ∅
4 omeu 8641 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
51, 3, 4mp3an13 1452 . 2 (𝐴 ∈ On → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
6 euex 2580 . . 3 (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
7 onsuc 7847 . . . . . . . . . 10 (𝑎 ∈ On → suc 𝑎 ∈ On)
87adantr 480 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → suc 𝑎 ∈ On)
9 simpr 484 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) = 𝐴)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑏 ∈ ω)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
12 omcl 8592 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
131, 11, 12sylancr 586 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o 𝑎) ∈ On)
14 oaordi 8602 . . . . . . . . . . . . . 14 ((ω ∈ On ∧ (ω ·o 𝑎) ∈ On) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
151, 13, 14sylancr 586 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
1610, 15mpd 15 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω))
17 omsuc 8582 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
181, 11, 17sylancr 586 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
1916, 18eleqtrrd 2847 . . . . . . . . . . 11 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
2019adantr 480 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
219, 20eqeltrrd 2845 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → 𝐴 ∈ (ω ·o suc 𝑎))
22 oveq2 7456 . . . . . . . . . . 11 (𝑥 = suc 𝑎 → (ω ·o 𝑥) = (ω ·o suc 𝑎))
2322eleq2d 2830 . . . . . . . . . 10 (𝑥 = suc 𝑎 → (𝐴 ∈ (ω ·o 𝑥) ↔ 𝐴 ∈ (ω ·o suc 𝑎)))
2423rspcev 3635 . . . . . . . . 9 ((suc 𝑎 ∈ On ∧ 𝐴 ∈ (ω ·o suc 𝑎)) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
258, 21, 24syl2an2r 684 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
2625ex 412 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (((ω ·o 𝑎) +o 𝑏) = 𝐴 → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2726adantld 490 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2827a1i 11 . . . . 5 (𝐴 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))))
2928rexlimdvv 3218 . . . 4 (𝐴 ∈ On → (∃𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
3029exlimdv 1932 . . 3 (𝐴 ∈ On → (∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
316, 30syl5 34 . 2 (𝐴 ∈ On → (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
325, 31mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wne 2946  wrex 3076  c0 4352  cop 4654  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by:  onexlimgt  43204
  Copyright terms: Public domain W3C validator