Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexomgt Structured version   Visualization version   GIF version

Theorem onexomgt 43231
Description: For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexomgt (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexomgt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9668 . . 3 ω ∈ On
2 peano1 7892 . . . 4 ∅ ∈ ω
32ne0ii 4324 . . 3 ω ≠ ∅
4 omeu 8605 . . 3 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
51, 3, 4mp3an13 1453 . 2 (𝐴 ∈ On → ∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
6 euex 2575 . . 3 (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴))
7 onsuc 7813 . . . . . . . . . 10 (𝑎 ∈ On → suc 𝑎 ∈ On)
87adantr 480 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → suc 𝑎 ∈ On)
9 simpr 484 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) = 𝐴)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑏 ∈ ω)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → 𝑎 ∈ On)
12 omcl 8556 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
131, 11, 12sylancr 587 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o 𝑎) ∈ On)
14 oaordi 8566 . . . . . . . . . . . . . 14 ((ω ∈ On ∧ (ω ·o 𝑎) ∈ On) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
151, 13, 14sylancr 587 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (𝑏 ∈ ω → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω)))
1610, 15mpd 15 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ ((ω ·o 𝑎) +o ω))
17 omsuc 8546 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
181, 11, 17sylancr 587 . . . . . . . . . . . 12 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (ω ·o suc 𝑎) = ((ω ·o 𝑎) +o ω))
1916, 18eleqtrrd 2836 . . . . . . . . . . 11 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
2019adantr 480 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ((ω ·o 𝑎) +o 𝑏) ∈ (ω ·o suc 𝑎))
219, 20eqeltrrd 2834 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → 𝐴 ∈ (ω ·o suc 𝑎))
22 oveq2 7421 . . . . . . . . . . 11 (𝑥 = suc 𝑎 → (ω ·o 𝑥) = (ω ·o suc 𝑎))
2322eleq2d 2819 . . . . . . . . . 10 (𝑥 = suc 𝑎 → (𝐴 ∈ (ω ·o 𝑥) ↔ 𝐴 ∈ (ω ·o suc 𝑎)))
2423rspcev 3605 . . . . . . . . 9 ((suc 𝑎 ∈ On ∧ 𝐴 ∈ (ω ·o suc 𝑎)) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
258, 21, 24syl2an2r 685 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ ω) ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
2625ex 412 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → (((ω ·o 𝑎) +o 𝑏) = 𝐴 → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2726adantld 490 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
2827a1i 11 . . . . 5 (𝐴 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ ω) → ((𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))))
2928rexlimdvv 3199 . . . 4 (𝐴 ∈ On → (∃𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
3029exlimdv 1932 . . 3 (𝐴 ∈ On → (∃𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
316, 30syl5 34 . 2 (𝐴 ∈ On → (∃!𝑐𝑎 ∈ On ∃𝑏 ∈ ω (𝑐 = ⟨𝑎, 𝑏⟩ ∧ ((ω ·o 𝑎) +o 𝑏) = 𝐴) → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)))
325, 31mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  ∃!weu 2566  wne 2931  wrex 3059  c0 4313  cop 4612  Oncon0 6363  suc csuc 6365  (class class class)co 7413  ωcom 7869   +o coa 8485   ·o comu 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-omul 8493
This theorem is referenced by:  onexlimgt  43233
  Copyright terms: Public domain W3C validator