MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintrab Structured version   Visualization version   GIF version

Theorem onintrab 7623
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
onintrab ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab
StepHypRef Expression
1 intex 5256 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ {𝑥 ∈ On ∣ 𝜑} ∈ V)
2 ssrab2 4009 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 oninton 7622 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
42, 3mpan 686 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ On)
51, 4sylbir 234 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ V → {𝑥 ∈ On ∣ 𝜑} ∈ On)
6 elex 3440 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ On → {𝑥 ∈ On ∣ 𝜑} ∈ V)
75, 6impbii 208 1 ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253   cint 4876  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  onintrab2  7624  sltval2  33786  sltres  33792
  Copyright terms: Public domain W3C validator