| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onintrab | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| onintrab | ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex 5344 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 2 | ssrab2 4080 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 3 | oninton 7815 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| 5 | 1, 4 | sylbir 235 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| 6 | elex 3501 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 ∩ cint 4946 Oncon0 6384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 |
| This theorem is referenced by: onintrab2 7817 sltval2 27701 sltres 27707 |
| Copyright terms: Public domain | W3C validator |