Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onintrab | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
onintrab | ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5261 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
2 | ssrab2 4013 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | oninton 7645 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
4 | 2, 3 | mpan 687 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
6 | elex 3450 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
7 | 5, 6 | impbii 208 | 1 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∩ cint 4879 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: onintrab2 7647 sltval2 33859 sltres 33865 |
Copyright terms: Public domain | W3C validator |