![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onintrab | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
onintrab | ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5343 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
2 | ssrab2 4077 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | oninton 7806 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
4 | 2, 3 | mpan 688 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
6 | elex 3492 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
7 | 5, 6 | impbii 208 | 1 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ≠ wne 2937 {crab 3430 Vcvv 3473 ⊆ wss 3949 ∅c0 4326 ∩ cint 4953 Oncon0 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 |
This theorem is referenced by: onintrab2 7808 sltval2 27617 sltres 27623 |
Copyright terms: Public domain | W3C validator |