| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onintrab | Structured version Visualization version GIF version | ||
| Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
| Ref | Expression |
|---|---|
| onintrab | ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex 5284 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 2 | ssrab2 4029 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 3 | oninton 7734 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| 5 | 1, 4 | sylbir 235 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| 6 | elex 3458 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 ∩ cint 4897 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onintrab2 7736 sltval2 27596 sltres 27602 |
| Copyright terms: Public domain | W3C validator |