MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintrab Structured version   Visualization version   GIF version

Theorem onintrab 7772
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
onintrab ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)

Proof of Theorem onintrab
StepHypRef Expression
1 intex 5299 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ {𝑥 ∈ On ∣ 𝜑} ∈ V)
2 ssrab2 4043 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 oninton 7771 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ On)
42, 3mpan 690 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ On)
51, 4sylbir 235 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ V → {𝑥 ∈ On ∣ 𝜑} ∈ On)
6 elex 3468 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ On → {𝑥 ∈ On ∣ 𝜑} ∈ V)
75, 6impbii 209 1 ( {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ {𝑥 ∈ On ∣ 𝜑} ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  wss 3914  c0 4296   cint 4910  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  onintrab2  7773  sltval2  27568  sltres  27574
  Copyright terms: Public domain W3C validator