![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onintrab | Structured version Visualization version GIF version |
Description: The intersection of a class of ordinal numbers exists iff it is an ordinal number. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
onintrab | ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5330 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
2 | ssrab2 4072 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
3 | oninton 7780 | . . . 4 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) | |
4 | 2, 3 | mpan 687 | . . 3 ⊢ ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
5 | 1, 4 | sylbir 234 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
6 | elex 3487 | . 2 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ On → ∩ {𝑥 ∈ On ∣ 𝜑} ∈ V) | |
7 | 5, 6 | impbii 208 | 1 ⊢ (∩ {𝑥 ∈ On ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∈ On ∣ 𝜑} ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ≠ wne 2934 {crab 3426 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 ∩ cint 4943 Oncon0 6358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 |
This theorem is referenced by: onintrab2 7782 sltval2 27544 sltres 27550 |
Copyright terms: Public domain | W3C validator |