MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oninton Structured version   Visualization version   GIF version

Theorem oninton 7495
Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.)
Assertion
Ref Expression
oninton ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)

Proof of Theorem oninton
StepHypRef Expression
1 onint 7490 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
21ex 416 . . 3 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴𝐴))
3 ssel 3908 . . 3 (𝐴 ⊆ On → ( 𝐴𝐴 𝐴 ∈ On))
42, 3syld 47 . 2 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴 ∈ On))
54imp 410 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wne 2987  wss 3881  c0 4243   cint 4838  Oncon0 6159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163
This theorem is referenced by:  onintrab  7496  onnmin  7498  onminex  7502  onmindif2  7507  iinon  7960  oawordeulem  8163  nnawordex  8246  tz9.12lem1  9200  rankf  9207  cardf2  9356  cff  9659  coftr  9684  sltval2  33276  nocvxminlem  33360  dnnumch3lem  39990  dnnumch3  39991
  Copyright terms: Public domain W3C validator