| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oninton | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| Ref | Expression |
|---|---|
| oninton | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint 7723 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴)) |
| 3 | ssel 3928 | . . 3 ⊢ (𝐴 ⊆ On → (∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On)) | |
| 4 | 2, 3 | syld 47 | . 2 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ On)) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 ∩ cint 4897 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: onintrab 7729 onnmin 7731 onminex 7735 onmindif2 7740 iinon 8260 oawordeulem 8469 nnawordex 8552 tz9.12lem1 9680 rankf 9687 cardf2 9836 cff 10139 coftr 10164 sltval2 27596 nocvxminlem 27718 dnnumch3lem 43085 dnnumch3 43086 onintunirab 43266 oninfint 43275 oninfcl2 43277 naddwordnexlem4 43440 |
| Copyright terms: Public domain | W3C validator |