MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oninton Structured version   Visualization version   GIF version

Theorem oninton 7515
Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.)
Assertion
Ref Expression
oninton ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)

Proof of Theorem oninton
StepHypRef Expression
1 onint 7510 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
21ex 415 . . 3 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴𝐴))
3 ssel 3961 . . 3 (𝐴 ⊆ On → ( 𝐴𝐴 𝐴 ∈ On))
42, 3syld 47 . 2 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴 ∈ On))
54imp 409 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wne 3016  wss 3936  c0 4291   cint 4876  Oncon0 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195
This theorem is referenced by:  onintrab  7516  onnmin  7518  onminex  7522  onmindif2  7527  iinon  7977  oawordeulem  8180  nnawordex  8263  tz9.12lem1  9216  rankf  9223  cardf2  9372  cff  9670  coftr  9695  sltval2  33163  nocvxminlem  33247  dnnumch3lem  39666  dnnumch3  39667
  Copyright terms: Public domain W3C validator