| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oninton | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| Ref | Expression |
|---|---|
| oninton | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint 7810 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴)) |
| 3 | ssel 3977 | . . 3 ⊢ (𝐴 ⊆ On → (∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On)) | |
| 4 | 2, 3 | syld 47 | . 2 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ On)) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ⊆ wss 3951 ∅c0 4333 ∩ cint 4946 Oncon0 6384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 |
| This theorem is referenced by: onintrab 7816 onnmin 7818 onminex 7822 onmindif2 7827 iinon 8380 oawordeulem 8592 nnawordex 8675 tz9.12lem1 9827 rankf 9834 cardf2 9983 cff 10288 coftr 10313 sltval2 27701 nocvxminlem 27822 dnnumch3lem 43058 dnnumch3 43059 onintunirab 43239 oninfint 43248 oninfcl2 43250 naddwordnexlem4 43414 |
| Copyright terms: Public domain | W3C validator |