Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oninton | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
Ref | Expression |
---|---|
oninton | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7630 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴)) |
3 | ssel 3913 | . . 3 ⊢ (𝐴 ⊆ On → (∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On)) | |
4 | 2, 3 | syld 47 | . 2 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ On)) |
5 | 4 | imp 407 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3886 ∅c0 4256 ∩ cint 4879 Oncon0 6259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5074 df-opab 5136 df-tr 5191 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-ord 6262 df-on 6263 |
This theorem is referenced by: onintrab 7636 onnmin 7638 onminex 7642 onmindif2 7647 iinon 8158 oawordeulem 8372 nnawordex 8455 tz9.12lem1 9555 rankf 9562 cardf2 9711 cff 10014 coftr 10039 sltval2 33867 nocvxminlem 33980 dnnumch3lem 40879 dnnumch3 40880 |
Copyright terms: Public domain | W3C validator |