Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oninton | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
Ref | Expression |
---|---|
oninton | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint 7617 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴)) |
3 | ssel 3910 | . . 3 ⊢ (𝐴 ⊆ On → (∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On)) | |
4 | 2, 3 | syld 47 | . 2 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ On)) |
5 | 4 | imp 406 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: onintrab 7623 onnmin 7625 onminex 7629 onmindif2 7634 iinon 8142 oawordeulem 8347 nnawordex 8430 tz9.12lem1 9476 rankf 9483 cardf2 9632 cff 9935 coftr 9960 sltval2 33786 nocvxminlem 33899 dnnumch3lem 40787 dnnumch3 40788 |
Copyright terms: Public domain | W3C validator |