MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oninton Structured version   Visualization version   GIF version

Theorem oninton 7774
Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.)
Assertion
Ref Expression
oninton ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)

Proof of Theorem oninton
StepHypRef Expression
1 onint 7769 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
21ex 412 . . 3 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴𝐴))
3 ssel 3943 . . 3 (𝐴 ⊆ On → ( 𝐴𝐴 𝐴 ∈ On))
42, 3syld 47 . 2 (𝐴 ⊆ On → (𝐴 ≠ ∅ → 𝐴 ∈ On))
54imp 406 1 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  wss 3917  c0 4299   cint 4913  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  onintrab  7775  onnmin  7777  onminex  7781  onmindif2  7786  iinon  8312  oawordeulem  8521  nnawordex  8604  tz9.12lem1  9747  rankf  9754  cardf2  9903  cff  10208  coftr  10233  sltval2  27575  nocvxminlem  27696  dnnumch3lem  43042  dnnumch3  43043  onintunirab  43223  oninfint  43232  oninfcl2  43234  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator