| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oninton | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by NM, 29-Jan-1997.) |
| Ref | Expression |
|---|---|
| oninton | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint 7729 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝐴) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ 𝐴)) |
| 3 | ssel 3924 | . . 3 ⊢ (𝐴 ⊆ On → (∩ 𝐴 ∈ 𝐴 → ∩ 𝐴 ∈ On)) | |
| 4 | 2, 3 | syld 47 | . 2 ⊢ (𝐴 ⊆ On → (𝐴 ≠ ∅ → ∩ 𝐴 ∈ On)) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 ∩ cint 4897 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onintrab 7735 onnmin 7737 onminex 7741 onmindif2 7746 iinon 8266 oawordeulem 8475 nnawordex 8558 tz9.12lem1 9687 rankf 9694 cardf2 9843 cff 10146 coftr 10171 sltval2 27596 nocvxminlem 27718 dnnumch3lem 43164 dnnumch3 43165 onintunirab 43345 oninfint 43354 oninfcl2 43356 naddwordnexlem4 43519 |
| Copyright terms: Public domain | W3C validator |