Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onpsssuc | Structured version Visualization version GIF version |
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
onpsssuc | ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6341 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | eloni 6273 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordsuc 7649 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
5 | ordelpss 6291 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) | |
6 | 2, 4, 5 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) |
7 | 1, 6 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 ⊊ wpss 3892 Ord word 6262 Oncon0 6263 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 df-suc 6269 |
This theorem is referenced by: ackbij1lem15 9974 |
Copyright terms: Public domain | W3C validator |