| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onpsssuc | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| onpsssuc | ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg 6385 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
| 2 | eloni 6312 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | ordsuc 7739 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
| 5 | ordelpss 6330 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) |
| 7 | 1, 6 | mpbid 232 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2110 ⊊ wpss 3901 Ord word 6301 Oncon0 6302 suc csuc 6304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 df-suc 6308 |
| This theorem is referenced by: ackbij1lem15 10116 |
| Copyright terms: Public domain | W3C validator |