MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onpsssuc Structured version   Visualization version   GIF version

Theorem onpsssuc 7839
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
onpsssuc (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)

Proof of Theorem onpsssuc
StepHypRef Expression
1 sucidg 6467 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6396 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordsuc 7833 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
42, 3sylib 218 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
5 ordelpss 6414 . . 3 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
62, 4, 5syl2anc 584 . 2 (𝐴 ∈ On → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
71, 6mpbid 232 1 (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wpss 3964  Ord word 6385  Oncon0 6386  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392
This theorem is referenced by:  ackbij1lem15  10271
  Copyright terms: Public domain W3C validator