MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onpsssuc Structured version   Visualization version   GIF version

Theorem onpsssuc 7794
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
onpsssuc (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)

Proof of Theorem onpsssuc
StepHypRef Expression
1 sucidg 6415 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6342 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordsuc 7788 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
42, 3sylib 218 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
5 ordelpss 6360 . . 3 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
62, 4, 5syl2anc 584 . 2 (𝐴 ∈ On → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
71, 6mpbid 232 1 (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wpss 3915  Ord word 6331  Oncon0 6332  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by:  ackbij1lem15  10186
  Copyright terms: Public domain W3C validator