MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onpsssuc Structured version   Visualization version   GIF version

Theorem onpsssuc 7698
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
onpsssuc (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)

Proof of Theorem onpsssuc
StepHypRef Expression
1 sucidg 6361 . 2 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6291 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordsuc 7693 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
42, 3sylib 217 . . 3 (𝐴 ∈ On → Ord suc 𝐴)
5 ordelpss 6309 . . 3 ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
62, 4, 5syl2anc 585 . 2 (𝐴 ∈ On → (𝐴 ∈ suc 𝐴𝐴 ⊊ suc 𝐴))
71, 6mpbid 231 1 (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wpss 3893  Ord word 6280  Oncon0 6281  suc csuc 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284  df-on 6285  df-suc 6287
This theorem is referenced by:  ackbij1lem15  10040
  Copyright terms: Public domain W3C validator