Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onpsssuc | Structured version Visualization version GIF version |
Description: An ordinal number is a proper subset of its successor. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
onpsssuc | ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6361 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | eloni 6291 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordsuc 7693 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
5 | ordelpss 6309 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐴) → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) | |
6 | 2, 4, 5 | syl2anc 585 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ⊊ suc 𝐴)) |
7 | 1, 6 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊊ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ⊊ wpss 3893 Ord word 6280 Oncon0 6281 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-suc 6287 |
This theorem is referenced by: ackbij1lem15 10040 |
Copyright terms: Public domain | W3C validator |