Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onuniorsuci | Structured version Visualization version GIF version |
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onuniorsuci | ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6356 | . 2 ⊢ Ord 𝐴 |
3 | orduniorsuc 7652 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 Ord word 6250 Oncon0 6251 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: onuninsuci 7662 |
Copyright terms: Public domain | W3C validator |