![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onuniorsuci | Structured version Visualization version GIF version |
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onuniorsuci | ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6127 | . 2 ⊢ Ord 𝐴 |
3 | orduniorsuc 7355 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 833 = wceq 1507 ∈ wcel 2048 ∪ cuni 4706 Ord word 6022 Oncon0 6023 suc csuc 6025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-tr 5025 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-ord 6026 df-on 6027 df-suc 6029 |
This theorem is referenced by: onuninsuci 7365 |
Copyright terms: Public domain | W3C validator |