MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuci Structured version   Visualization version   GIF version

Theorem onuniorsuci 7573
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuniorsuci (𝐴 = 𝐴𝐴 = suc 𝐴)

Proof of Theorem onuniorsuci
StepHypRef Expression
1 onssi.1 . . 3 𝐴 ∈ On
21onordi 6277 . 2 Ord 𝐴
3 orduniorsuc 7564 . 2 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
42, 3ax-mp 5 1 (𝐴 = 𝐴𝐴 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1542  wcel 2114   cuni 4796  Ord word 6171  Oncon0 6172  suc csuc 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-ord 6175  df-on 6176  df-suc 6178
This theorem is referenced by:  onuninsuci  7574
  Copyright terms: Public domain W3C validator