Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onuniorsuci | Structured version Visualization version GIF version |
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onuniorsuci | ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6277 | . 2 ⊢ Ord 𝐴 |
3 | orduniorsuc 7564 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1542 ∈ wcel 2114 ∪ cuni 4796 Ord word 6171 Oncon0 6172 suc csuc 6174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-tr 5137 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-ord 6175 df-on 6176 df-suc 6178 |
This theorem is referenced by: onuninsuci 7574 |
Copyright terms: Public domain | W3C validator |