MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuci Structured version   Visualization version   GIF version

Theorem onuniorsuci 7661
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuniorsuci (𝐴 = 𝐴𝐴 = suc 𝐴)

Proof of Theorem onuniorsuci
StepHypRef Expression
1 onssi.1 . . 3 𝐴 ∈ On
21onordi 6356 . 2 Ord 𝐴
3 orduniorsuc 7652 . 2 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
42, 3ax-mp 5 1 (𝐴 = 𝐴𝐴 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1539  wcel 2108   cuni 4836  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  onuninsuci  7662
  Copyright terms: Public domain W3C validator