MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelssne Structured version   Visualization version   GIF version

Theorem ordelssne 6194
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordelssne ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))

Proof of Theorem ordelssne
StepHypRef Expression
1 ordtr 6181 . . 3 (Ord 𝐴 → Tr 𝐴)
2 tz7.7 6193 . . 3 ((Ord 𝐵 ∧ Tr 𝐴) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
31, 2sylan2 594 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
43ancoms 461 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wne 3006  wss 3913  Tr wtr 5148  Ord word 6166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-tr 5149  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-ord 6170
This theorem is referenced by:  ordelpss  6195  onelpss  6207  orduniorsuc  7523  ominf  8708
  Copyright terms: Public domain W3C validator