Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelssne | Structured version Visualization version GIF version |
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ordelssne | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6317 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | tz7.7 6329 | . . 3 ⊢ ((Ord 𝐵 ∧ Tr 𝐴) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | |
3 | 1, 2 | sylan2 593 | . 2 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
4 | 3 | ancoms 459 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3898 Tr wtr 5210 Ord word 6302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-tr 5211 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-ord 6306 |
This theorem is referenced by: ordelpss 6331 onelpss 6343 orduniorsuc 7744 ominf 9124 ominfOLD 9125 scutbdaybnd2lim 27063 |
Copyright terms: Public domain | W3C validator |