MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelssne Structured version   Visualization version   GIF version

Theorem ordelssne 6293
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordelssne ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))

Proof of Theorem ordelssne
StepHypRef Expression
1 ordtr 6280 . . 3 (Ord 𝐴 → Tr 𝐴)
2 tz7.7 6292 . . 3 ((Ord 𝐵 ∧ Tr 𝐴) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
31, 2sylan2 593 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
43ancoms 459 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943  wss 3887  Tr wtr 5191  Ord word 6265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269
This theorem is referenced by:  ordelpss  6294  onelpss  6306  orduniorsuc  7677  ominf  9035  scutbdaybnd2lim  34011
  Copyright terms: Public domain W3C validator