MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominfOLD Structured version   Visualization version   GIF version

Theorem ominfOLD 9261
Description: Obsolete version of ominf 9260 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ominfOLD ¬ ω ∈ Fin

Proof of Theorem ominfOLD
StepHypRef Expression
1 isfi 8974 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7860 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7862 . . . . . . . 8 Ord ω
4 ordelssne 6385 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 585 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 267 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3962 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 233 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 ensym 9001 . . . . 5 (ω ≈ 𝑥𝑥 ≈ ω)
10 pssinf 9258 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
118, 9, 10syl2an 595 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1211rexlimiva 3141 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
131, 12sylbi 216 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
14 pm2.01 188 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1513, 14ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  wne 2934  wrex 3064  wss 3943  wpss 3944   class class class wbr 5141  Ord word 6357  ωcom 7852  cen 8938  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator