MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominfOLD Structured version   Visualization version   GIF version

Theorem ominfOLD 9286
Description: Obsolete version of ominf 9285 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ominfOLD ¬ ω ∈ Fin

Proof of Theorem ominfOLD
StepHypRef Expression
1 isfi 8999 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7876 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7878 . . . . . . . 8 Ord ω
4 ordelssne 6395 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 584 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 266 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3966 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 233 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 ensym 9026 . . . . 5 (ω ≈ 𝑥𝑥 ≈ ω)
10 pssinf 9283 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
118, 9, 10syl2an 594 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1211rexlimiva 3137 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
131, 12sylbi 216 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
14 pm2.01 188 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1513, 14ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2099  wne 2930  wrex 3060  wss 3946  wpss 3947   class class class wbr 5145  Ord word 6367  ωcom 7868  cen 8963  Fincfn 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-om 7869  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator