![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ominfOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ominf 9258 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ominfOLD | ⊢ ¬ ω ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8972 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
2 | nnord 7863 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
3 | ordom 7865 | . . . . . . . 8 ⊢ Ord ω | |
4 | ordelssne 6392 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
5 | 2, 3, 4 | sylancl 587 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
6 | 5 | ibi 267 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
7 | df-pss 3968 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
9 | ensym 8999 | . . . . 5 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
10 | pssinf 9256 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
11 | 8, 9, 10 | syl2an 597 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
12 | 11 | rexlimiva 3148 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
13 | 1, 12 | sylbi 216 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
14 | pm2.01 188 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
15 | 13, 14 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 ⊆ wss 3949 ⊊ wpss 3950 class class class wbr 5149 Ord word 6364 ωcom 7855 ≈ cen 8936 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |