MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd2lim Structured version   Visualization version   GIF version

Theorem scutbdaybnd2lim 27669
Description: An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
scutbdaybnd2lim ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))

Proof of Theorem scutbdaybnd2lim
StepHypRef Expression
1 scutbdaybnd2 27668 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21adantr 480 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
3 bdayfun 27624 . . . . . . . . 9 Fun bday
4 ssltex1 27638 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐴 ∈ V)
5 ssltex2 27639 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 ∈ V)
6 unexg 7730 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
74, 5, 6syl2anc 583 . . . . . . . . 9 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
8 funimaexg 6625 . . . . . . . . 9 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
93, 7, 8sylancr 586 . . . . . . . 8 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
109uniexd 7726 . . . . . . 7 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
1110adantr 480 . . . . . 6 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday “ (𝐴𝐵)) ∈ V)
12 nlimsucg 7825 . . . . . 6 ( ( bday “ (𝐴𝐵)) ∈ V → ¬ Lim suc ( bday “ (𝐴𝐵)))
1311, 12syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ Lim suc ( bday “ (𝐴𝐵)))
14 limeq 6367 . . . . . . 7 (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → (Lim ( bday ‘(𝐴 |s 𝐵)) ↔ Lim suc ( bday “ (𝐴𝐵))))
1514biimpcd 248 . . . . . 6 (Lim ( bday ‘(𝐴 |s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1615adantl 481 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1713, 16mtod 197 . . . 4 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ ( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)))
1817neqned 2939 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))
19 bdayelon 27628 . . . . 5 ( bday ‘(𝐴 |s 𝐵)) ∈ On
2019onordi 6466 . . . 4 Ord ( bday ‘(𝐴 |s 𝐵))
21 imassrn 6061 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
22 bdayrn 27627 . . . . . . 7 ran bday = On
2321, 22sseqtri 4011 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
24 ssorduni 7760 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
2523, 24ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
26 ordsuc 7795 . . . . 5 (Ord ( bday “ (𝐴𝐵)) ↔ Ord suc ( bday “ (𝐴𝐵)))
2725, 26mpbi 229 . . . 4 Ord suc ( bday “ (𝐴𝐵))
28 ordelssne 6382 . . . 4 ((Ord ( bday ‘(𝐴 |s 𝐵)) ∧ Ord suc ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))))
2920, 27, 28mp2an 689 . . 3 (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵))))
302, 18, 29sylanbrc 582 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)))
3119a1i 11 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ On)
32 ordsssuc 6444 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ Ord ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3331, 25, 32sylancl 585 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3430, 33mpbird 257 1 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  cun 3939  wss 3941   cuni 4900   class class class wbr 5139  ran crn 5668  cima 5670  Ord word 6354  Oncon0 6355  Lim wlim 6356  suc csuc 6357  Fun wfun 6528  cfv 6534  (class class class)co 7402   bday cbday 27494   <<s csslt 27632   |s cscut 27634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1o 8462  df-2o 8463  df-no 27495  df-slt 27496  df-bday 27497  df-sslt 27633  df-scut 27635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator