Proof of Theorem scutbdaybnd2lim
| Step | Hyp | Ref
| Expression |
| 1 | | scutbdaybnd2 27785 |
. . . 4
⊢ (𝐴 <<s 𝐵 → ( bday
‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ∪
( bday “ (𝐴 ∪ 𝐵))) |
| 3 | | bdayfun 27741 |
. . . . . . . . 9
⊢ Fun bday |
| 4 | | ssltex1 27755 |
. . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
| 5 | | ssltex2 27756 |
. . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) |
| 6 | | unexg 7742 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 7 | 4, 5, 6 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → (𝐴 ∪ 𝐵) ∈ V) |
| 8 | | funimaexg 6628 |
. . . . . . . . 9
⊢ ((Fun
bday ∧ (𝐴 ∪ 𝐵) ∈ V) → (
bday “ (𝐴
∪ 𝐵)) ∈
V) |
| 9 | 3, 7, 8 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 <<s 𝐵 → ( bday
“ (𝐴 ∪ 𝐵)) ∈ V) |
| 10 | 9 | uniexd 7741 |
. . . . . . 7
⊢ (𝐴 <<s 𝐵 → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V) |
| 12 | | nlimsucg 7842 |
. . . . . 6
⊢ (∪ ( bday “ (𝐴 ∪ 𝐵)) ∈ V → ¬ Lim suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ¬ Lim suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 14 | | limeq 6369 |
. . . . . . 7
⊢ (( bday ‘(𝐴 |s 𝐵)) = suc ∪ ( bday “ (𝐴 ∪ 𝐵)) → (Lim ( bday
‘(𝐴 |s 𝐵)) ↔ Lim suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 15 | 14 | biimpcd 249 |
. . . . . 6
⊢ (Lim
( bday ‘(𝐴 |s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) = suc ∪ ( bday “ (𝐴 ∪ 𝐵)) → Lim suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) = suc ∪ ( bday “ (𝐴 ∪ 𝐵)) → Lim suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 17 | 13, 16 | mtod 198 |
. . . 4
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ¬ ( bday ‘(𝐴 |s 𝐵)) = suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 18 | 17 | neqned 2940 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ≠ suc ∪
( bday “ (𝐴 ∪ 𝐵))) |
| 19 | | bdayelon 27745 |
. . . . 5
⊢ ( bday ‘(𝐴 |s 𝐵)) ∈ On |
| 20 | 19 | onordi 6470 |
. . . 4
⊢ Ord
( bday ‘(𝐴 |s 𝐵)) |
| 21 | | imassrn 6063 |
. . . . . . 7
⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ ran bday
|
| 22 | | bdayrn 27744 |
. . . . . . 7
⊢ ran bday = On |
| 23 | 21, 22 | sseqtri 4012 |
. . . . . 6
⊢ ( bday “ (𝐴 ∪ 𝐵)) ⊆ On |
| 24 | | ssorduni 7778 |
. . . . . 6
⊢ (( bday “ (𝐴 ∪ 𝐵)) ⊆ On → Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 25 | 23, 24 | ax-mp 5 |
. . . . 5
⊢ Ord ∪ ( bday “ (𝐴 ∪ 𝐵)) |
| 26 | | ordsuc 7812 |
. . . . 5
⊢ (Ord
∪ ( bday “
(𝐴 ∪ 𝐵)) ↔ Ord suc ∪ ( bday “ (𝐴 ∪ 𝐵))) |
| 27 | 25, 26 | mpbi 230 |
. . . 4
⊢ Ord suc
∪ ( bday “
(𝐴 ∪ 𝐵)) |
| 28 | | ordelssne 6384 |
. . . 4
⊢ ((Ord
( bday ‘(𝐴 |s 𝐵)) ∧ Ord suc ∪ ( bday “ (𝐴 ∪ 𝐵))) → (( bday
‘(𝐴 |s 𝐵)) ∈ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ↔ (( bday
‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) ≠ suc ∪ ( bday “ (𝐴 ∪ 𝐵))))) |
| 29 | 20, 27, 28 | mp2an 692 |
. . 3
⊢ (( bday ‘(𝐴 |s 𝐵)) ∈ suc ∪
( bday “ (𝐴 ∪ 𝐵)) ↔ (( bday
‘(𝐴 |s 𝐵)) ⊆ suc ∪ ( bday “ (𝐴 ∪ 𝐵)) ∧ ( bday
‘(𝐴 |s 𝐵)) ≠ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 30 | 2, 18, 29 | sylanbrc 583 |
. 2
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ suc ∪
( bday “ (𝐴 ∪ 𝐵))) |
| 31 | 19 | a1i 11 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ On) |
| 32 | | ordsssuc 6448 |
. . 3
⊢ ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ Ord ∪ ( bday “ (𝐴 ∪ 𝐵))) → (( bday
‘(𝐴 |s 𝐵)) ⊆ ∪ ( bday “ (𝐴 ∪ 𝐵)) ↔ ( bday
‘(𝐴 |s 𝐵)) ∈ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 33 | 31, 25, 32 | sylancl 586 |
. 2
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ∪
( bday “ (𝐴 ∪ 𝐵)) ↔ ( bday
‘(𝐴 |s 𝐵)) ∈ suc ∪ ( bday “ (𝐴 ∪ 𝐵)))) |
| 34 | 30, 33 | mpbird 257 |
1
⊢ ((𝐴 <<s 𝐵 ∧ Lim ( bday
‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ∪
( bday “ (𝐴 ∪ 𝐵))) |