MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd2lim Structured version   Visualization version   GIF version

Theorem scutbdaybnd2lim 27780
Description: An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
scutbdaybnd2lim ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))

Proof of Theorem scutbdaybnd2lim
StepHypRef Expression
1 scutbdaybnd2 27779 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21adantr 479 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
3 bdayfun 27735 . . . . . . . . 9 Fun bday
4 ssltex1 27749 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐴 ∈ V)
5 ssltex2 27750 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 ∈ V)
6 unexg 7750 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
74, 5, 6syl2anc 582 . . . . . . . . 9 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
8 funimaexg 6638 . . . . . . . . 9 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
93, 7, 8sylancr 585 . . . . . . . 8 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
109uniexd 7746 . . . . . . 7 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
1110adantr 479 . . . . . 6 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday “ (𝐴𝐵)) ∈ V)
12 nlimsucg 7845 . . . . . 6 ( ( bday “ (𝐴𝐵)) ∈ V → ¬ Lim suc ( bday “ (𝐴𝐵)))
1311, 12syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ Lim suc ( bday “ (𝐴𝐵)))
14 limeq 6381 . . . . . . 7 (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → (Lim ( bday ‘(𝐴 |s 𝐵)) ↔ Lim suc ( bday “ (𝐴𝐵))))
1514biimpcd 248 . . . . . 6 (Lim ( bday ‘(𝐴 |s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1615adantl 480 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1713, 16mtod 197 . . . 4 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ ( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)))
1817neqned 2937 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))
19 bdayelon 27739 . . . . 5 ( bday ‘(𝐴 |s 𝐵)) ∈ On
2019onordi 6480 . . . 4 Ord ( bday ‘(𝐴 |s 𝐵))
21 imassrn 6074 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
22 bdayrn 27738 . . . . . . 7 ran bday = On
2321, 22sseqtri 4014 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
24 ssorduni 7780 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
2523, 24ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
26 ordsuc 7815 . . . . 5 (Ord ( bday “ (𝐴𝐵)) ↔ Ord suc ( bday “ (𝐴𝐵)))
2725, 26mpbi 229 . . . 4 Ord suc ( bday “ (𝐴𝐵))
28 ordelssne 6396 . . . 4 ((Ord ( bday ‘(𝐴 |s 𝐵)) ∧ Ord suc ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))))
2920, 27, 28mp2an 690 . . 3 (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵))))
302, 18, 29sylanbrc 581 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)))
3119a1i 11 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ On)
32 ordsssuc 6458 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ Ord ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3331, 25, 32sylancl 584 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3430, 33mpbird 256 1 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  cun 3943  wss 3945   cuni 4908   class class class wbr 5148  ran crn 5678  cima 5680  Ord word 6368  Oncon0 6369  Lim wlim 6370  suc csuc 6371  Fun wfun 6541  cfv 6547  (class class class)co 7417   bday cbday 27605   <<s csslt 27743   |s cscut 27745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-1o 8485  df-2o 8486  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27744  df-scut 27746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator