MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd2lim Structured version   Visualization version   GIF version

Theorem scutbdaybnd2lim 27178
Description: An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
scutbdaybnd2lim ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))

Proof of Theorem scutbdaybnd2lim
StepHypRef Expression
1 scutbdaybnd2 27177 . . . 4 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
21adantr 482 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
3 bdayfun 27134 . . . . . . . . 9 Fun bday
4 ssltex1 27148 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐴 ∈ V)
5 ssltex2 27149 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 ∈ V)
6 unexg 7684 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
74, 5, 6syl2anc 585 . . . . . . . . 9 (𝐴 <<s 𝐵 → (𝐴𝐵) ∈ V)
8 funimaexg 6588 . . . . . . . . 9 ((Fun bday ∧ (𝐴𝐵) ∈ V) → ( bday “ (𝐴𝐵)) ∈ V)
93, 7, 8sylancr 588 . . . . . . . 8 (𝐴 <<s 𝐵 → ( bday “ (𝐴𝐵)) ∈ V)
109uniexd 7680 . . . . . . 7 (𝐴 <<s 𝐵 ( bday “ (𝐴𝐵)) ∈ V)
1110adantr 482 . . . . . 6 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday “ (𝐴𝐵)) ∈ V)
12 nlimsucg 7779 . . . . . 6 ( ( bday “ (𝐴𝐵)) ∈ V → ¬ Lim suc ( bday “ (𝐴𝐵)))
1311, 12syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ Lim suc ( bday “ (𝐴𝐵)))
14 limeq 6330 . . . . . . 7 (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → (Lim ( bday ‘(𝐴 |s 𝐵)) ↔ Lim suc ( bday “ (𝐴𝐵))))
1514biimpcd 249 . . . . . 6 (Lim ( bday ‘(𝐴 |s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1615adantl 483 . . . . 5 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)) → Lim suc ( bday “ (𝐴𝐵))))
1713, 16mtod 197 . . . 4 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ¬ ( bday ‘(𝐴 |s 𝐵)) = suc ( bday “ (𝐴𝐵)))
1817neqned 2947 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))
19 bdayelon 27138 . . . . 5 ( bday ‘(𝐴 |s 𝐵)) ∈ On
2019onordi 6429 . . . 4 Ord ( bday ‘(𝐴 |s 𝐵))
21 imassrn 6025 . . . . . . 7 ( bday “ (𝐴𝐵)) ⊆ ran bday
22 bdayrn 27137 . . . . . . 7 ran bday = On
2321, 22sseqtri 3981 . . . . . 6 ( bday “ (𝐴𝐵)) ⊆ On
24 ssorduni 7714 . . . . . 6 (( bday “ (𝐴𝐵)) ⊆ On → Ord ( bday “ (𝐴𝐵)))
2523, 24ax-mp 5 . . . . 5 Ord ( bday “ (𝐴𝐵))
26 ordsuc 7749 . . . . 5 (Ord ( bday “ (𝐴𝐵)) ↔ Ord suc ( bday “ (𝐴𝐵)))
2725, 26mpbi 229 . . . 4 Ord suc ( bday “ (𝐴𝐵))
28 ordelssne 6345 . . . 4 ((Ord ( bday ‘(𝐴 |s 𝐵)) ∧ Ord suc ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵)))))
2920, 27, 28mp2an 691 . . 3 (( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)) ↔ (( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)) ∧ ( bday ‘(𝐴 |s 𝐵)) ≠ suc ( bday “ (𝐴𝐵))))
302, 18, 29sylanbrc 584 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵)))
3119a1i 11 . . 3 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ∈ On)
32 ordsssuc 6407 . . 3 ((( bday ‘(𝐴 |s 𝐵)) ∈ On ∧ Ord ( bday “ (𝐴𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3331, 25, 32sylancl 587 . 2 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → (( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)) ↔ ( bday ‘(𝐴 |s 𝐵)) ∈ suc ( bday “ (𝐴𝐵))))
3430, 33mpbird 257 1 ((𝐴 <<s 𝐵 ∧ Lim ( bday ‘(𝐴 |s 𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  cun 3909  wss 3911   cuni 4866   class class class wbr 5106  ran crn 5635  cima 5637  Ord word 6317  Oncon0 6318  Lim wlim 6319  suc csuc 6320  Fun wfun 6491  cfv 6497  (class class class)co 7358   bday cbday 27006   <<s csslt 27142   |s cscut 27144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1o 8413  df-2o 8414  df-no 27007  df-slt 27008  df-bday 27009  df-sslt 27143  df-scut 27145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator