![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelpss | Structured version Visualization version GIF version |
Description: Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
onelpss | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6381 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6381 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordelssne 6398 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) | |
4 | 1, 2, 3 | syl2an 594 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 Ord word 6370 Oncon0 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6374 df-on 6375 |
This theorem is referenced by: tfindsg 7866 findsg 7905 oancom 9676 cardsdom2 10013 alephord 10100 scutbdaylt 27797 omabs2 42903 naddwordnexlem4 42973 omssrncard 43112 |
Copyright terms: Public domain | W3C validator |