MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelpss Structured version   Visualization version   GIF version

Theorem onelpss 6423
Description: Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onelpss ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))

Proof of Theorem onelpss
StepHypRef Expression
1 eloni 6393 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6393 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordelssne 6410 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
41, 2, 3syl2an 596 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wne 2939  wss 3950  Ord word 6382  Oncon0 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387
This theorem is referenced by:  tfindsg  7883  findsg  7920  oancom  9692  cardsdom2  10029  alephord  10116  scutbdaylt  27864  omabs2  43350  naddwordnexlem4  43419  omssrncard  43558
  Copyright terms: Public domain W3C validator