MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelpss Structured version   Visualization version   GIF version

Theorem onelpss 6405
Description: Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onelpss ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))

Proof of Theorem onelpss
StepHypRef Expression
1 eloni 6375 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6375 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordelssne 6392 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
41, 2, 3syl2an 597 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wne 2941  wss 3949  Ord word 6364  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369
This theorem is referenced by:  tfindsg  7850  findsg  7890  oancom  9646  cardsdom2  9983  alephord  10070  scutbdaylt  27319  omabs2  42082  naddwordnexlem4  42152  omssrncard  42291
  Copyright terms: Public domain W3C validator