MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Visualization version   GIF version

Theorem ominf 9148
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5301. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
ominf ¬ ω ∈ Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 8898 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7804 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7806 . . . . . . . 8 Ord ω
4 ordelssne 6333 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 586 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 267 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3917 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 234 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 nnfi 9077 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
10 ensymfib 9093 . . . . . . 7 (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
119, 10syl 17 . . . . . 6 (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
1211biimpar 477 . . . . 5 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω)
13 pssinf 9146 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
148, 12, 13syl2an2r 685 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1514rexlimiva 3125 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
161, 15sylbi 217 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
17 pm2.01 188 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1816, 17ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  wne 2928  wrex 3056  wss 3897  wpss 3898   class class class wbr 5089  Ord word 6305  ωcom 7796  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  fineqv  9151  nnsdomg  9183  ackbij1lem18  10127  fin23lem21  10230  fin23lem28  10231  fin23lem30  10233  isfin1-2  10276  uzinf  13872  bitsf1  16357  odhash  19486  ufinffr  23844  fineqvnttrclse  35144  poimirlem30  37700  diophin  42875  diophren  42916  fiphp3d  42922
  Copyright terms: Public domain W3C validator