![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ominf | Structured version Visualization version GIF version |
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 2-Jan-2025.) |
Ref | Expression |
---|---|
ominf | ⊢ ¬ ω ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 9036 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
2 | nnord 7911 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
3 | ordom 7913 | . . . . . . . 8 ⊢ Ord ω | |
4 | ordelssne 6422 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
5 | 2, 3, 4 | sylancl 585 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
6 | 5 | ibi 267 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
7 | df-pss 3996 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
9 | nnfi 9233 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
10 | ensymfib 9250 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) |
12 | 11 | biimpar 477 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω) |
13 | pssinf 9319 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
14 | 8, 12, 13 | syl2an2r 684 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
15 | 14 | rexlimiva 3153 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
16 | 1, 15 | sylbi 217 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
17 | pm2.01 188 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
18 | 16, 17 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 ⊊ wpss 3977 class class class wbr 5166 Ord word 6394 ωcom 7903 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: fineqv 9326 nnsdomg 9363 nnsdomgOLD 9364 ackbij1lem18 10305 fin23lem21 10408 fin23lem28 10409 fin23lem30 10411 isfin1-2 10454 uzinf 14016 bitsf1 16492 odhash 19616 ufinffr 23958 poimirlem30 37610 diophin 42728 diophren 42769 fiphp3d 42775 |
Copyright terms: Public domain | W3C validator |