| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ominf | Structured version Visualization version GIF version | ||
| Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5335. (Revised by BTernaryTau, 2-Jan-2025.) |
| Ref | Expression |
|---|---|
| ominf | ⊢ ¬ ω ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8988 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
| 2 | nnord 7867 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
| 3 | ordom 7869 | . . . . . . . 8 ⊢ Ord ω | |
| 4 | ordelssne 6379 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
| 6 | 5 | ibi 267 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
| 7 | df-pss 3946 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
| 9 | nnfi 9179 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 10 | ensymfib 9196 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) |
| 12 | 11 | biimpar 477 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω) |
| 13 | pssinf 9262 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
| 14 | 8, 12, 13 | syl2an2r 685 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
| 15 | 14 | rexlimiva 3133 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
| 16 | 1, 15 | sylbi 217 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
| 17 | pm2.01 188 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
| 18 | 16, 17 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ⊆ wss 3926 ⊊ wpss 3927 class class class wbr 5119 Ord word 6351 ωcom 7859 ≈ cen 8954 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1o 8478 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 |
| This theorem is referenced by: fineqv 9269 nnsdomg 9305 nnsdomgOLD 9306 ackbij1lem18 10248 fin23lem21 10351 fin23lem28 10352 fin23lem30 10354 isfin1-2 10397 uzinf 13981 bitsf1 16463 odhash 19553 ufinffr 23865 poimirlem30 37620 diophin 42742 diophren 42783 fiphp3d 42789 |
| Copyright terms: Public domain | W3C validator |