MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Visualization version   GIF version

Theorem ominf 8722
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf ¬ ω ∈ Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 8525 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7580 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7581 . . . . . . . 8 Ord ω
4 ordelssne 6211 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 588 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 269 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3952 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 236 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 ensym 8550 . . . . 5 (ω ≈ 𝑥𝑥 ≈ ω)
10 pssinf 8720 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
118, 9, 10syl2an 597 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1211rexlimiva 3279 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
131, 12sylbi 219 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
14 pm2.01 191 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1513, 14ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2107  wne 3014  wrex 3137  wss 3934  wpss 3935   class class class wbr 5057  Ord word 6183  ωcom 7572  cen 8498  Fincfn 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505
This theorem is referenced by:  fineqv  8725  nnsdomg  8769  ackbij1lem18  9651  fin23lem21  9753  fin23lem28  9754  fin23lem30  9756  isfin1-2  9799  uzinf  13325  bitsf1  15787  odhash  18691  ufinffr  22529  poimirlem30  34909  diophin  39354  diophren  39395  fiphp3d  39401
  Copyright terms: Public domain W3C validator