Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ominf | Structured version Visualization version GIF version |
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
Ref | Expression |
---|---|
ominf | ⊢ ¬ ω ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8719 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
2 | nnord 7695 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
3 | ordom 7697 | . . . . . . . 8 ⊢ Ord ω | |
4 | ordelssne 6278 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
5 | 2, 3, 4 | sylancl 585 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
6 | 5 | ibi 266 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
7 | df-pss 3902 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
8 | 6, 7 | sylibr 233 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
9 | ensym 8744 | . . . . 5 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
10 | pssinf 8962 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
11 | 8, 9, 10 | syl2an 595 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
12 | 11 | rexlimiva 3209 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
13 | 1, 12 | sylbi 216 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
14 | pm2.01 188 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
15 | 13, 14 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 Ord word 6250 ωcom 7687 ≈ cen 8688 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 |
This theorem is referenced by: fineqv 8967 nnsdomg 9003 ackbij1lem18 9924 fin23lem21 10026 fin23lem28 10027 fin23lem30 10029 isfin1-2 10072 uzinf 13613 bitsf1 16081 odhash 19094 ufinffr 22988 poimirlem30 35734 diophin 40510 diophren 40551 fiphp3d 40557 |
Copyright terms: Public domain | W3C validator |