| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ominf | Structured version Visualization version GIF version | ||
| Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5301. (Revised by BTernaryTau, 2-Jan-2025.) |
| Ref | Expression |
|---|---|
| ominf | ⊢ ¬ ω ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 8898 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
| 2 | nnord 7804 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
| 3 | ordom 7806 | . . . . . . . 8 ⊢ Ord ω | |
| 4 | ordelssne 6333 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
| 6 | 5 | ibi 267 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
| 7 | df-pss 3917 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
| 9 | nnfi 9077 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 10 | ensymfib 9093 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥)) |
| 12 | 11 | biimpar 477 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω) |
| 13 | pssinf 9146 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
| 14 | 8, 12, 13 | syl2an2r 685 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
| 15 | 14 | rexlimiva 3125 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
| 16 | 1, 15 | sylbi 217 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
| 17 | pm2.01 188 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
| 18 | 16, 17 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5089 Ord word 6305 ωcom 7796 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 |
| This theorem is referenced by: fineqv 9151 nnsdomg 9183 ackbij1lem18 10127 fin23lem21 10230 fin23lem28 10231 fin23lem30 10233 isfin1-2 10276 uzinf 13872 bitsf1 16357 odhash 19486 ufinffr 23844 fineqvnttrclse 35144 poimirlem30 37700 diophin 42875 diophren 42916 fiphp3d 42922 |
| Copyright terms: Public domain | W3C validator |