MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Visualization version   GIF version

Theorem ominf 9264
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5363. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
ominf ¬ ω ∈ Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 8978 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7867 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7869 . . . . . . . 8 Ord ω
4 ordelssne 6391 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 585 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 267 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3967 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 233 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 nnfi 9173 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
10 ensymfib 9193 . . . . . . 7 (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
119, 10syl 17 . . . . . 6 (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
1211biimpar 477 . . . . 5 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω)
13 pssinf 9262 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
148, 12, 13syl2an2r 682 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1514rexlimiva 3146 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
161, 15sylbi 216 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
17 pm2.01 188 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1816, 17ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2105  wne 2939  wrex 3069  wss 3948  wpss 3949   class class class wbr 5148  Ord word 6363  ωcom 7859  cen 8942  Fincfn 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8472  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949
This theorem is referenced by:  fineqv  9269  nnsdomg  9308  nnsdomgOLD  9309  ackbij1lem18  10238  fin23lem21  10340  fin23lem28  10341  fin23lem30  10343  isfin1-2  10386  uzinf  13937  bitsf1  16394  odhash  19487  ufinffr  23666  poimirlem30  36834  diophin  41825  diophren  41866  fiphp3d  41872
  Copyright terms: Public domain W3C validator