![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ominf | Structured version Visualization version GIF version |
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
Ref | Expression |
---|---|
ominf | ⊢ ¬ ω ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8246 | . . 3 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
2 | nnord 7334 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
3 | ordom 7335 | . . . . . . . 8 ⊢ Ord ω | |
4 | ordelssne 5990 | . . . . . . . 8 ⊢ ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) | |
5 | 2, 3, 4 | sylancl 582 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))) |
6 | 5 | ibi 259 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) |
7 | df-pss 3814 | . . . . . 6 ⊢ (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)) | |
8 | 6, 7 | sylibr 226 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ⊊ ω) |
9 | ensym 8271 | . . . . 5 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
10 | pssinf 8439 | . . . . 5 ⊢ ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin) | |
11 | 8, 9, 10 | syl2an 591 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin) |
12 | 11 | rexlimiva 3237 | . . 3 ⊢ (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin) |
13 | 1, 12 | sylbi 209 | . 2 ⊢ (ω ∈ Fin → ¬ ω ∈ Fin) |
14 | pm2.01 181 | . 2 ⊢ ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin) | |
15 | 13, 14 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2166 ≠ wne 2999 ∃wrex 3118 ⊆ wss 3798 ⊊ wpss 3799 class class class wbr 4873 Ord word 5962 ωcom 7326 ≈ cen 8219 Fincfn 8222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-om 7327 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 |
This theorem is referenced by: fineqv 8444 nnsdomg 8488 ackbij1lem18 9374 fin23lem21 9476 fin23lem28 9477 fin23lem30 9479 isfin1-2 9522 uzinf 13059 bitsf1 15541 odhash 18340 ufinffr 22103 poimirlem30 33983 diophin 38180 diophren 38221 fiphp3d 38227 |
Copyright terms: Public domain | W3C validator |