MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Visualization version   GIF version

Theorem ominf 9153
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5304. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
ominf ¬ ω ∈ Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 8901 . . 3 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
2 nnord 7807 . . . . . . . 8 (𝑥 ∈ ω → Ord 𝑥)
3 ordom 7809 . . . . . . . 8 Ord ω
4 ordelssne 6334 . . . . . . . 8 ((Ord 𝑥 ∧ Ord ω) → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
52, 3, 4sylancl 586 . . . . . . 7 (𝑥 ∈ ω → (𝑥 ∈ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω)))
65ibi 267 . . . . . 6 (𝑥 ∈ ω → (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
7 df-pss 3923 . . . . . 6 (𝑥 ⊊ ω ↔ (𝑥 ⊆ ω ∧ 𝑥 ≠ ω))
86, 7sylibr 234 . . . . 5 (𝑥 ∈ ω → 𝑥 ⊊ ω)
9 nnfi 9081 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
10 ensymfib 9098 . . . . . . 7 (𝑥 ∈ Fin → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
119, 10syl 17 . . . . . 6 (𝑥 ∈ ω → (𝑥 ≈ ω ↔ ω ≈ 𝑥))
1211biimpar 477 . . . . 5 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → 𝑥 ≈ ω)
13 pssinf 9151 . . . . 5 ((𝑥 ⊊ ω ∧ 𝑥 ≈ ω) → ¬ ω ∈ Fin)
148, 12, 13syl2an2r 685 . . . 4 ((𝑥 ∈ ω ∧ ω ≈ 𝑥) → ¬ ω ∈ Fin)
1514rexlimiva 3122 . . 3 (∃𝑥 ∈ ω ω ≈ 𝑥 → ¬ ω ∈ Fin)
161, 15sylbi 217 . 2 (ω ∈ Fin → ¬ ω ∈ Fin)
17 pm2.01 188 . 2 ((ω ∈ Fin → ¬ ω ∈ Fin) → ¬ ω ∈ Fin)
1816, 17ax-mp 5 1 ¬ ω ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wrex 3053  wss 3903  wpss 3904   class class class wbr 5092  Ord word 6306  ωcom 7799  cen 8869  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876
This theorem is referenced by:  fineqv  9156  nnsdomg  9188  ackbij1lem18  10130  fin23lem21  10233  fin23lem28  10234  fin23lem30  10236  isfin1-2  10279  uzinf  13872  bitsf1  16357  odhash  19453  ufinffr  23814  fineqvnttrclse  35077  poimirlem30  37634  diophin  42749  diophren  42790  fiphp3d  42796
  Copyright terms: Public domain W3C validator