MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri4 Structured version   Visualization version   GIF version

Theorem ordtri4 6400
Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))

Proof of Theorem ordtri4
StepHypRef Expression
1 eqss 3979 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
2 ordtri1 6396 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
32ancoms 458 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
43anbi2d 630 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
51, 4bitrid 283 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3931  Ord word 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366
This theorem is referenced by:  carduni  10003  alephfp  10130  newbday  27876
  Copyright terms: Public domain W3C validator