| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri4 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ordtri4 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | ordtri1 6339 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
| 4 | 3 | anbi2d 630 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 |
| This theorem is referenced by: carduni 9874 alephfp 9999 newbday 27847 |
| Copyright terms: Public domain | W3C validator |