![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri4 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordtri4 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3904 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | ordtri1 6099 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
3 | 2 | ancoms 459 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
4 | 3 | anbi2d 628 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
5 | 1, 4 | syl5bb 284 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 Ord word 6065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-tr 5064 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-ord 6069 |
This theorem is referenced by: carduni 9256 alephfp 9380 |
Copyright terms: Public domain | W3C validator |