MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3 Structured version   Visualization version   GIF version

Theorem ordtri3 6431
Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordtri3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))

Proof of Theorem ordtri3
StepHypRef Expression
1 ordirr 6413 . . . . . 6 (Ord 𝐵 → ¬ 𝐵𝐵)
21adantl 481 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ 𝐵𝐵)
3 eleq2 2833 . . . . . 6 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
43notbid 318 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐵))
52, 4syl5ibrcom 247 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
65pm4.71d 561 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵𝐴)))
7 pm5.61 1001 . . . 4 (((𝐴 = 𝐵𝐵𝐴) ∧ ¬ 𝐵𝐴) ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵𝐴))
8 pm4.52 985 . . . 4 (((𝐴 = 𝐵𝐵𝐴) ∧ ¬ 𝐵𝐴) ↔ ¬ (¬ (𝐴 = 𝐵𝐵𝐴) ∨ 𝐵𝐴))
97, 8bitr3i 277 . . 3 ((𝐴 = 𝐵 ∧ ¬ 𝐵𝐴) ↔ ¬ (¬ (𝐴 = 𝐵𝐵𝐴) ∨ 𝐵𝐴))
106, 9bitrdi 287 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (¬ (𝐴 = 𝐵𝐵𝐴) ∨ 𝐵𝐴)))
11 ordtri2 6430 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
1211orbi1d 915 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (¬ (𝐴 = 𝐵𝐵𝐴) ∨ 𝐵𝐴)))
1312notbid 318 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵𝐵𝐴) ↔ ¬ (¬ (𝐴 = 𝐵𝐵𝐴) ∨ 𝐵𝐴)))
1410, 13bitr4d 282 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  ordunisuc2  7881  tz7.48lem  8497  oacan  8604  omcan  8625  oecan  8645  omsmo  8714  omopthi  8717  inf3lem6  9702  cantnfp1lem3  9749  infpssrlem5  10376  fin23lem24  10391  isf32lem4  10425  om2uzf1oi  14004  om2noseqf1o  28325  ordnexbtwnsuc  43229
  Copyright terms: Public domain W3C validator