![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri3 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordtri3 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 5981 | . . . . . 6 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
2 | 1 | adantl 475 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ¬ 𝐵 ∈ 𝐵) |
3 | eleq2 2895 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
4 | 3 | notbid 310 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
5 | 2, 4 | syl5ibrcom 239 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
6 | 5 | pm4.71d 557 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴))) |
7 | pm5.61 1028 | . . . 4 ⊢ (((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∧ ¬ 𝐵 ∈ 𝐴) ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴)) | |
8 | pm4.52 1012 | . . . 4 ⊢ (((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∧ ¬ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴)) | |
9 | 7, 8 | bitr3i 269 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴)) |
10 | 6, 9 | syl6bb 279 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
11 | ordtri2 5998 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
12 | 11 | orbi1d 945 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
13 | 12 | notbid 310 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
14 | 10, 13 | bitr4d 274 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 Ord word 5962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-tr 4976 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-ord 5966 |
This theorem is referenced by: ordunisuc2 7305 tz7.48lem 7802 oacan 7895 omcan 7916 oecan 7936 omsmo 8001 omopthi 8004 inf3lem6 8807 cantnfp1lem3 8854 infpssrlem5 9444 fin23lem24 9459 isf32lem4 9493 om2uzf1oi 13047 |
Copyright terms: Public domain | W3C validator |