| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri3 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| ordtri3 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr 6375 | . . . . . 6 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ¬ 𝐵 ∈ 𝐵) |
| 3 | eleq2 2824 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
| 5 | 2, 4 | syl5ibrcom 247 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
| 6 | 5 | pm4.71d 561 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴))) |
| 7 | pm5.61 1002 | . . . 4 ⊢ (((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∧ ¬ 𝐵 ∈ 𝐴) ↔ (𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴)) | |
| 8 | pm4.52 986 | . . . 4 ⊢ (((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∧ ¬ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴)) | |
| 9 | 7, 8 | bitr3i 277 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴)) |
| 10 | 6, 9 | bitrdi 287 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
| 11 | ordtri2 6392 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) | |
| 12 | 11 | orbi1d 916 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
| 13 | 12 | notbid 318 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ (¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐵 ∈ 𝐴))) |
| 14 | 10, 13 | bitr4d 282 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 |
| This theorem is referenced by: ordunisuc2 7844 tz7.48lem 8460 oacan 8565 omcan 8586 oecan 8606 omsmo 8675 omopthi 8678 inf3lem6 9652 cantnfp1lem3 9699 infpssrlem5 10326 fin23lem24 10341 isf32lem4 10375 om2uzf1oi 13976 om2noseqf1o 28252 ordnexbtwnsuc 43258 |
| Copyright terms: Public domain | W3C validator |