MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Visualization version   GIF version

Theorem alephfp 10067
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 10068 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfp (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)

Proof of Theorem alephfp
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
21alephfplem4 10066 . 2 (𝐻 “ ω) ∈ ran ℵ
3 isinfcard 10051 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) ↔ (𝐻 “ ω) ∈ ran ℵ)
4 cardalephex 10049 . . . 4 (ω ⊆ (𝐻 “ ω) → ((card‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧)))
54biimpa 476 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
63, 5sylbir 235 . 2 ( (𝐻 “ ω) ∈ ran ℵ → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
7 alephle 10047 . . . . . . . . 9 (𝑧 ∈ On → 𝑧 ⊆ (ℵ‘𝑧))
8 alephon 10028 . . . . . . . . . . 11 (ℵ‘𝑧) ∈ On
98onirri 6449 . . . . . . . . . 10 ¬ (ℵ‘𝑧) ∈ (ℵ‘𝑧)
10 frfnom 8405 . . . . . . . . . . . . . 14 (rec(ℵ, ω) ↾ ω) Fn ω
111fneq1i 6617 . . . . . . . . . . . . . 14 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
1210, 11mpbir 231 . . . . . . . . . . . . 13 𝐻 Fn ω
13 fnfun 6620 . . . . . . . . . . . . 13 (𝐻 Fn ω → Fun 𝐻)
14 eluniima 7226 . . . . . . . . . . . . 13 (Fun 𝐻 → (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣)))
1512, 13, 14mp2b 10 . . . . . . . . . . . 12 (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣))
16 alephsson 10059 . . . . . . . . . . . . . . . 16 ran ℵ ⊆ On
171alephfplem3 10065 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
1816, 17sselid 3946 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝐻𝑣) ∈ On)
19 alephord2i 10036 . . . . . . . . . . . . . . 15 ((𝐻𝑣) ∈ On → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
211alephfplem2 10064 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (ℵ‘(𝐻𝑣)))
22 peano2 7868 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 fnfvelrn 7054 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 Fn ω ∧ suc 𝑣 ∈ ω) → (𝐻‘suc 𝑣) ∈ ran 𝐻)
2412, 23mpan 690 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ ran 𝐻)
25 fnima 6650 . . . . . . . . . . . . . . . . . . . 20 (𝐻 Fn ω → (𝐻 “ ω) = ran 𝐻)
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐻 “ ω) = ran 𝐻
2724, 26eleqtrrdi 2840 . . . . . . . . . . . . . . . . . 18 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2822, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2921, 28eqeltrrd 2830 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω))
30 elssuni 4903 . . . . . . . . . . . . . . . 16 ((ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω) → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3231sseld 3947 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → ((ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣)) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3320, 32syld 47 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3433rexlimiv 3128 . . . . . . . . . . . 12 (∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
3515, 34sylbi 217 . . . . . . . . . . 11 (𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
36 eleq2 2818 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 (𝐻 “ ω) ↔ 𝑧 ∈ (ℵ‘𝑧)))
37 eleq2 2818 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘𝑧) ∈ (𝐻 “ ω) ↔ (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
3836, 37imbi12d 344 . . . . . . . . . . 11 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω)) ↔ (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧))))
3935, 38mpbii 233 . . . . . . . . . 10 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
409, 39mtoi 199 . . . . . . . . 9 ( (𝐻 “ ω) = (ℵ‘𝑧) → ¬ 𝑧 ∈ (ℵ‘𝑧))
417, 40anim12i 613 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))
42 eloni 6344 . . . . . . . . . 10 (𝑧 ∈ On → Ord 𝑧)
438onordi 6447 . . . . . . . . . 10 Ord (ℵ‘𝑧)
44 ordtri4 6371 . . . . . . . . . 10 ((Ord 𝑧 ∧ Ord (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4542, 43, 44sylancl 586 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4645adantr 480 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4741, 46mpbird 257 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (ℵ‘𝑧))
48 eqeq2 2742 . . . . . . . 8 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
4948adantl 481 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
5047, 49mpbird 257 . . . . . 6 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (𝐻 “ ω))
5150eqcomd 2736 . . . . 5 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝐻 “ ω) = 𝑧)
5251fveq2d 6864 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧))
53 eqeq2 2742 . . . . 5 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5453adantl 481 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5552, 54mpbird 257 . . 3 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
5655rexlimiva 3127 . 2 (∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
572, 6, 56mp2b 10 1 (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3916   cuni 4873  ran crn 5641  cres 5642  cima 5643  Ord word 6333  Oncon0 6334  suc csuc 6336  Fun wfun 6507   Fn wfn 6508  cfv 6513  ωcom 7844  reccrdg 8379  cardccrd 9894  cale 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-oi 9469  df-har 9516  df-card 9898  df-aleph 9899
This theorem is referenced by:  alephfp2  10068
  Copyright terms: Public domain W3C validator