MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Visualization version   GIF version

Theorem alephfp 9991
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 9992 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfp (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)

Proof of Theorem alephfp
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
21alephfplem4 9990 . 2 (𝐻 “ ω) ∈ ran ℵ
3 isinfcard 9975 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) ↔ (𝐻 “ ω) ∈ ran ℵ)
4 cardalephex 9973 . . . 4 (ω ⊆ (𝐻 “ ω) → ((card‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧)))
54biimpa 476 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
63, 5sylbir 235 . 2 ( (𝐻 “ ω) ∈ ran ℵ → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
7 alephle 9971 . . . . . . . . 9 (𝑧 ∈ On → 𝑧 ⊆ (ℵ‘𝑧))
8 alephon 9952 . . . . . . . . . . 11 (ℵ‘𝑧) ∈ On
98onirri 6416 . . . . . . . . . 10 ¬ (ℵ‘𝑧) ∈ (ℵ‘𝑧)
10 frfnom 8349 . . . . . . . . . . . . . 14 (rec(ℵ, ω) ↾ ω) Fn ω
111fneq1i 6574 . . . . . . . . . . . . . 14 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
1210, 11mpbir 231 . . . . . . . . . . . . 13 𝐻 Fn ω
13 fnfun 6577 . . . . . . . . . . . . 13 (𝐻 Fn ω → Fun 𝐻)
14 eluniima 7179 . . . . . . . . . . . . 13 (Fun 𝐻 → (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣)))
1512, 13, 14mp2b 10 . . . . . . . . . . . 12 (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣))
16 alephsson 9983 . . . . . . . . . . . . . . . 16 ran ℵ ⊆ On
171alephfplem3 9989 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
1816, 17sselid 3930 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝐻𝑣) ∈ On)
19 alephord2i 9960 . . . . . . . . . . . . . . 15 ((𝐻𝑣) ∈ On → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
211alephfplem2 9988 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (ℵ‘(𝐻𝑣)))
22 peano2 7815 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 fnfvelrn 7008 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 Fn ω ∧ suc 𝑣 ∈ ω) → (𝐻‘suc 𝑣) ∈ ran 𝐻)
2412, 23mpan 690 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ ran 𝐻)
25 fnima 6607 . . . . . . . . . . . . . . . . . . . 20 (𝐻 Fn ω → (𝐻 “ ω) = ran 𝐻)
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐻 “ ω) = ran 𝐻
2724, 26eleqtrrdi 2840 . . . . . . . . . . . . . . . . . 18 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2822, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2921, 28eqeltrrd 2830 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω))
30 elssuni 4887 . . . . . . . . . . . . . . . 16 ((ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω) → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3231sseld 3931 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → ((ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣)) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3320, 32syld 47 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3433rexlimiv 3124 . . . . . . . . . . . 12 (∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
3515, 34sylbi 217 . . . . . . . . . . 11 (𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
36 eleq2 2818 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 (𝐻 “ ω) ↔ 𝑧 ∈ (ℵ‘𝑧)))
37 eleq2 2818 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘𝑧) ∈ (𝐻 “ ω) ↔ (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
3836, 37imbi12d 344 . . . . . . . . . . 11 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω)) ↔ (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧))))
3935, 38mpbii 233 . . . . . . . . . 10 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
409, 39mtoi 199 . . . . . . . . 9 ( (𝐻 “ ω) = (ℵ‘𝑧) → ¬ 𝑧 ∈ (ℵ‘𝑧))
417, 40anim12i 613 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))
42 eloni 6312 . . . . . . . . . 10 (𝑧 ∈ On → Ord 𝑧)
438onordi 6415 . . . . . . . . . 10 Ord (ℵ‘𝑧)
44 ordtri4 6339 . . . . . . . . . 10 ((Ord 𝑧 ∧ Ord (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4542, 43, 44sylancl 586 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4645adantr 480 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4741, 46mpbird 257 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (ℵ‘𝑧))
48 eqeq2 2742 . . . . . . . 8 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
4948adantl 481 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
5047, 49mpbird 257 . . . . . 6 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (𝐻 “ ω))
5150eqcomd 2736 . . . . 5 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝐻 “ ω) = 𝑧)
5251fveq2d 6821 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧))
53 eqeq2 2742 . . . . 5 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5453adantl 481 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5552, 54mpbird 257 . . 3 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
5655rexlimiva 3123 . 2 (∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
572, 6, 56mp2b 10 1 (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wrex 3054  wss 3900   cuni 4857  ran crn 5615  cres 5616  cima 5617  Ord word 6301  Oncon0 6302  suc csuc 6304  Fun wfun 6471   Fn wfn 6472  cfv 6477  ωcom 7791  reccrdg 8323  cardccrd 9820  cale 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-har 9438  df-card 9824  df-aleph 9825
This theorem is referenced by:  alephfp2  9992
  Copyright terms: Public domain W3C validator