MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Visualization version   GIF version

Theorem alephfp 9569
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 9570 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfp (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)

Proof of Theorem alephfp
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
21alephfplem4 9568 . 2 (𝐻 “ ω) ∈ ran ℵ
3 isinfcard 9553 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) ↔ (𝐻 “ ω) ∈ ran ℵ)
4 cardalephex 9551 . . . 4 (ω ⊆ (𝐻 “ ω) → ((card‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧)))
54biimpa 481 . . 3 ((ω ⊆ (𝐻 “ ω) ∧ (card‘ (𝐻 “ ω)) = (𝐻 “ ω)) → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
63, 5sylbir 238 . 2 ( (𝐻 “ ω) ∈ ran ℵ → ∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧))
7 alephle 9549 . . . . . . . . 9 (𝑧 ∈ On → 𝑧 ⊆ (ℵ‘𝑧))
8 alephon 9530 . . . . . . . . . . 11 (ℵ‘𝑧) ∈ On
98onirri 6277 . . . . . . . . . 10 ¬ (ℵ‘𝑧) ∈ (ℵ‘𝑧)
10 frfnom 8081 . . . . . . . . . . . . . 14 (rec(ℵ, ω) ↾ ω) Fn ω
111fneq1i 6432 . . . . . . . . . . . . . 14 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
1210, 11mpbir 234 . . . . . . . . . . . . 13 𝐻 Fn ω
13 fnfun 6435 . . . . . . . . . . . . 13 (𝐻 Fn ω → Fun 𝐻)
14 eluniima 7002 . . . . . . . . . . . . 13 (Fun 𝐻 → (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣)))
1512, 13, 14mp2b 10 . . . . . . . . . . . 12 (𝑧 (𝐻 “ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣))
16 alephsson 9561 . . . . . . . . . . . . . . . 16 ran ℵ ⊆ On
171alephfplem3 9567 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
1816, 17sseldi 3891 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝐻𝑣) ∈ On)
19 alephord2i 9538 . . . . . . . . . . . . . . 15 ((𝐻𝑣) ∈ On → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
2018, 19syl 17 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣))))
211alephfplem2 9566 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (ℵ‘(𝐻𝑣)))
22 peano2 7602 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 fnfvelrn 6840 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 Fn ω ∧ suc 𝑣 ∈ ω) → (𝐻‘suc 𝑣) ∈ ran 𝐻)
2412, 23mpan 690 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ ran 𝐻)
25 fnima 6462 . . . . . . . . . . . . . . . . . . . 20 (𝐻 Fn ω → (𝐻 “ ω) = ran 𝐻)
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐻 “ ω) = ran 𝐻
2724, 26eleqtrrdi 2864 . . . . . . . . . . . . . . . . . 18 (suc 𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2822, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω))
2921, 28eqeltrrd 2854 . . . . . . . . . . . . . . . 16 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω))
30 elssuni 4831 . . . . . . . . . . . . . . . 16 ((ℵ‘(𝐻𝑣)) ∈ (𝐻 “ ω) → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (ℵ‘(𝐻𝑣)) ⊆ (𝐻 “ ω))
3231sseld 3892 . . . . . . . . . . . . . 14 (𝑣 ∈ ω → ((ℵ‘𝑧) ∈ (ℵ‘(𝐻𝑣)) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3320, 32syld 47 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω)))
3433rexlimiv 3205 . . . . . . . . . . . 12 (∃𝑣 ∈ ω 𝑧 ∈ (𝐻𝑣) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
3515, 34sylbi 220 . . . . . . . . . . 11 (𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω))
36 eleq2 2841 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 (𝐻 “ ω) ↔ 𝑧 ∈ (ℵ‘𝑧)))
37 eleq2 2841 . . . . . . . . . . . 12 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘𝑧) ∈ (𝐻 “ ω) ↔ (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
3836, 37imbi12d 349 . . . . . . . . . . 11 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((𝑧 (𝐻 “ ω) → (ℵ‘𝑧) ∈ (𝐻 “ ω)) ↔ (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧))))
3935, 38mpbii 236 . . . . . . . . . 10 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧)))
409, 39mtoi 202 . . . . . . . . 9 ( (𝐻 “ ω) = (ℵ‘𝑧) → ¬ 𝑧 ∈ (ℵ‘𝑧))
417, 40anim12i 616 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))
42 eloni 6180 . . . . . . . . . 10 (𝑧 ∈ On → Ord 𝑧)
438onordi 6275 . . . . . . . . . 10 Ord (ℵ‘𝑧)
44 ordtri4 6207 . . . . . . . . . 10 ((Ord 𝑧 ∧ Ord (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4542, 43, 44sylancl 590 . . . . . . . . 9 (𝑧 ∈ On → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4645adantr 485 . . . . . . . 8 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))))
4741, 46mpbird 260 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (ℵ‘𝑧))
48 eqeq2 2771 . . . . . . . 8 ( (𝐻 “ ω) = (ℵ‘𝑧) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
4948adantl 486 . . . . . . 7 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝑧 = (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧)))
5047, 49mpbird 260 . . . . . 6 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → 𝑧 = (𝐻 “ ω))
5150eqcomd 2765 . . . . 5 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (𝐻 “ ω) = 𝑧)
5251fveq2d 6663 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧))
53 eqeq2 2771 . . . . 5 ( (𝐻 “ ω) = (ℵ‘𝑧) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5453adantl 486 . . . 4 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → ((ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω) ↔ (ℵ‘ (𝐻 “ ω)) = (ℵ‘𝑧)))
5552, 54mpbird 260 . . 3 ((𝑧 ∈ On ∧ (𝐻 “ ω) = (ℵ‘𝑧)) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
5655rexlimiva 3206 . 2 (∃𝑧 ∈ On (𝐻 “ ω) = (ℵ‘𝑧) → (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω))
572, 6, 56mp2b 10 1 (ℵ‘ (𝐻 “ ω)) = (𝐻 “ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wrex 3072  wss 3859   cuni 4799  ran crn 5526  cres 5527  cima 5528  Ord word 6169  Oncon0 6170  suc csuc 6172  Fun wfun 6330   Fn wfn 6331  cfv 6336  ωcom 7580  reccrdg 8056  cardccrd 9398  cale 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-oi 9008  df-har 9055  df-card 9402  df-aleph 9403
This theorem is referenced by:  alephfp2  9570
  Copyright terms: Public domain W3C validator