Step | Hyp | Ref
| Expression |
1 | | alephfplem.1 |
. . 3
⊢ 𝐻 = (rec(ℵ, ω)
↾ ω) |
2 | 1 | alephfplem4 9794 |
. 2
⊢ ∪ (𝐻
“ ω) ∈ ran ℵ |
3 | | isinfcard 9779 |
. . 3
⊢ ((ω
⊆ ∪ (𝐻 “ ω) ∧ (card‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω)) ↔ ∪ (𝐻
“ ω) ∈ ran ℵ) |
4 | | cardalephex 9777 |
. . . 4
⊢ (ω
⊆ ∪ (𝐻 “ ω) → ((card‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω) ↔ ∃𝑧 ∈ On ∪ (𝐻
“ ω) = (ℵ‘𝑧))) |
5 | 4 | biimpa 476 |
. . 3
⊢ ((ω
⊆ ∪ (𝐻 “ ω) ∧ (card‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω)) → ∃𝑧 ∈ On ∪ (𝐻
“ ω) = (ℵ‘𝑧)) |
6 | 3, 5 | sylbir 234 |
. 2
⊢ (∪ (𝐻
“ ω) ∈ ran ℵ → ∃𝑧 ∈ On ∪
(𝐻 “ ω) =
(ℵ‘𝑧)) |
7 | | alephle 9775 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → 𝑧 ⊆ (ℵ‘𝑧)) |
8 | | alephon 9756 |
. . . . . . . . . . 11
⊢
(ℵ‘𝑧)
∈ On |
9 | 8 | onirri 6358 |
. . . . . . . . . 10
⊢ ¬
(ℵ‘𝑧) ∈
(ℵ‘𝑧) |
10 | | frfnom 8236 |
. . . . . . . . . . . . . 14
⊢
(rec(ℵ, ω) ↾ ω) Fn ω |
11 | 1 | fneq1i 6514 |
. . . . . . . . . . . . . 14
⊢ (𝐻 Fn ω ↔ (rec(ℵ,
ω) ↾ ω) Fn ω) |
12 | 10, 11 | mpbir 230 |
. . . . . . . . . . . . 13
⊢ 𝐻 Fn ω |
13 | | fnfun 6517 |
. . . . . . . . . . . . 13
⊢ (𝐻 Fn ω → Fun 𝐻) |
14 | | eluniima 7105 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐻 → (𝑧 ∈ ∪ (𝐻
“ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻‘𝑣))) |
15 | 12, 13, 14 | mp2b 10 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∪ (𝐻
“ ω) ↔ ∃𝑣 ∈ ω 𝑧 ∈ (𝐻‘𝑣)) |
16 | | alephsson 9787 |
. . . . . . . . . . . . . . . 16
⊢ ran
ℵ ⊆ On |
17 | 1 | alephfplem3 9793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
18 | 16, 17 | sselid 3915 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ On) |
19 | | alephord2i 9764 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝑣) ∈ On → (𝑧 ∈ (𝐻‘𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻‘𝑣)))) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ω → (𝑧 ∈ (𝐻‘𝑣) → (ℵ‘𝑧) ∈ (ℵ‘(𝐻‘𝑣)))) |
21 | 1 | alephfplem2 9792 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ ω → (𝐻‘suc 𝑣) = (ℵ‘(𝐻‘𝑣))) |
22 | | peano2 7711 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ ω → suc 𝑣 ∈
ω) |
23 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻 Fn ω ∧ suc 𝑣 ∈ ω) → (𝐻‘suc 𝑣) ∈ ran 𝐻) |
24 | 12, 23 | mpan 686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (suc
𝑣 ∈ ω →
(𝐻‘suc 𝑣) ∈ ran 𝐻) |
25 | | fnima 6547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐻 Fn ω → (𝐻 “ ω) = ran 𝐻) |
26 | 12, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 “ ω) = ran 𝐻 |
27 | 24, 26 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑣 ∈ ω →
(𝐻‘suc 𝑣) ∈ (𝐻 “ ω)) |
28 | 22, 27 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ ω → (𝐻‘suc 𝑣) ∈ (𝐻 “ ω)) |
29 | 21, 28 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ ω →
(ℵ‘(𝐻‘𝑣)) ∈ (𝐻 “ ω)) |
30 | | elssuni 4868 |
. . . . . . . . . . . . . . . 16
⊢
((ℵ‘(𝐻‘𝑣)) ∈ (𝐻 “ ω) →
(ℵ‘(𝐻‘𝑣)) ⊆ ∪
(𝐻 “
ω)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ω →
(ℵ‘(𝐻‘𝑣)) ⊆ ∪
(𝐻 “
ω)) |
32 | 31 | sseld 3916 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ω →
((ℵ‘𝑧) ∈
(ℵ‘(𝐻‘𝑣)) → (ℵ‘𝑧) ∈ ∪ (𝐻 “
ω))) |
33 | 20, 32 | syld 47 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ω → (𝑧 ∈ (𝐻‘𝑣) → (ℵ‘𝑧) ∈ ∪ (𝐻 “
ω))) |
34 | 33 | rexlimiv 3208 |
. . . . . . . . . . . 12
⊢
(∃𝑣 ∈
ω 𝑧 ∈ (𝐻‘𝑣) → (ℵ‘𝑧) ∈ ∪ (𝐻 “
ω)) |
35 | 15, 34 | sylbi 216 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ (𝐻
“ ω) → (ℵ‘𝑧) ∈ ∪ (𝐻 “
ω)) |
36 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → (𝑧 ∈ ∪ (𝐻 “ ω) ↔ 𝑧 ∈ (ℵ‘𝑧))) |
37 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → ((ℵ‘𝑧) ∈ ∪ (𝐻 “ ω) ↔
(ℵ‘𝑧) ∈
(ℵ‘𝑧))) |
38 | 36, 37 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → ((𝑧 ∈ ∪ (𝐻 “ ω) →
(ℵ‘𝑧) ∈
∪ (𝐻 “ ω)) ↔ (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧)))) |
39 | 35, 38 | mpbii 232 |
. . . . . . . . . 10
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → (𝑧 ∈ (ℵ‘𝑧) → (ℵ‘𝑧) ∈ (ℵ‘𝑧))) |
40 | 9, 39 | mtoi 198 |
. . . . . . . . 9
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → ¬ 𝑧 ∈ (ℵ‘𝑧)) |
41 | 7, 40 | anim12i 612 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧))) |
42 | | eloni 6261 |
. . . . . . . . . 10
⊢ (𝑧 ∈ On → Ord 𝑧) |
43 | 8 | onordi 6356 |
. . . . . . . . . 10
⊢ Ord
(ℵ‘𝑧) |
44 | | ordtri4 6288 |
. . . . . . . . . 10
⊢ ((Ord
𝑧 ∧ Ord
(ℵ‘𝑧)) →
(𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))) |
45 | 42, 43, 44 | sylancl 585 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → (𝑧 = (ℵ‘𝑧) ↔ (𝑧 ⊆ (ℵ‘𝑧) ∧ ¬ 𝑧 ∈ (ℵ‘𝑧)))) |
47 | 41, 46 | mpbird 256 |
. . . . . . 7
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → 𝑧 = (ℵ‘𝑧)) |
48 | | eqeq2 2750 |
. . . . . . . 8
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → (𝑧 = ∪ (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧))) |
49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → (𝑧 = ∪ (𝐻 “ ω) ↔ 𝑧 = (ℵ‘𝑧))) |
50 | 47, 49 | mpbird 256 |
. . . . . 6
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → 𝑧 = ∪ (𝐻 “
ω)) |
51 | 50 | eqcomd 2744 |
. . . . 5
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → ∪ (𝐻 “ ω) = 𝑧) |
52 | 51 | fveq2d 6760 |
. . . 4
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → (ℵ‘∪ (𝐻
“ ω)) = (ℵ‘𝑧)) |
53 | | eqeq2 2750 |
. . . . 5
⊢ (∪ (𝐻
“ ω) = (ℵ‘𝑧) → ((ℵ‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω) ↔
(ℵ‘∪ (𝐻 “ ω)) = (ℵ‘𝑧))) |
54 | 53 | adantl 481 |
. . . 4
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → ((ℵ‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω) ↔
(ℵ‘∪ (𝐻 “ ω)) = (ℵ‘𝑧))) |
55 | 52, 54 | mpbird 256 |
. . 3
⊢ ((𝑧 ∈ On ∧ ∪ (𝐻
“ ω) = (ℵ‘𝑧)) → (ℵ‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω)) |
56 | 55 | rexlimiva 3209 |
. 2
⊢
(∃𝑧 ∈ On
∪ (𝐻 “ ω) = (ℵ‘𝑧) → (ℵ‘∪ (𝐻
“ ω)) = ∪ (𝐻 “ ω)) |
57 | 2, 6, 56 | mp2b 10 |
1
⊢
(ℵ‘∪ (𝐻 “ ω)) = ∪ (𝐻
“ ω) |