Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > newbday | Structured version Visualization version GIF version |
Description: A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
newbday | ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madebday 34080 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | |
2 | oldbday 34081 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | |
3 | 2 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (¬ 𝑋 ∈ ( O ‘𝐴) ↔ ¬ ( bday ‘𝑋) ∈ 𝐴)) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → ((𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)) ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
5 | newval 34039 | . . . . . 6 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
7 | 6 | eleq2d 2824 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ 𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)))) |
8 | eldif 3897 | . . . 4 ⊢ (𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴))) | |
9 | 7, 8 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
10 | 9 | adantr 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
11 | bdayelon 33971 | . . . . 5 ⊢ ( bday ‘𝑋) ∈ On | |
12 | 11 | onordi 6371 | . . . 4 ⊢ Ord ( bday ‘𝑋) |
13 | eloni 6276 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
14 | ordtri4 6303 | . . . 4 ⊢ ((Ord ( bday ‘𝑋) ∧ Ord 𝐴) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) | |
15 | 12, 13, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
16 | 15 | adantr 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
17 | 4, 10, 16 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 Ord word 6265 Oncon0 6266 ‘cfv 6433 No csur 33843 bday cbday 33845 M cmade 34026 O cold 34027 N cnew 34028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 df-old 34032 df-new 34033 df-left 34034 df-right 34035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |