![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > newbday | Structured version Visualization version GIF version |
Description: A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
newbday | ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madebday 27956 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | |
2 | oldbday 27957 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | |
3 | 2 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (¬ 𝑋 ∈ ( O ‘𝐴) ↔ ¬ ( bday ‘𝑋) ∈ 𝐴)) |
4 | 1, 3 | anbi12d 631 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → ((𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)) ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
5 | newval 27912 | . . . . . 6 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
7 | 6 | eleq2d 2830 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ 𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)))) |
8 | eldif 3986 | . . . 4 ⊢ (𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴))) | |
9 | 7, 8 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
11 | bdayelon 27839 | . . . . 5 ⊢ ( bday ‘𝑋) ∈ On | |
12 | 11 | onordi 6506 | . . . 4 ⊢ Ord ( bday ‘𝑋) |
13 | eloni 6405 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
14 | ordtri4 6432 | . . . 4 ⊢ ((Ord ( bday ‘𝑋) ∧ Ord 𝐴) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) | |
15 | 12, 13, 14 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
16 | 15 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
17 | 4, 10, 16 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 Ord word 6394 Oncon0 6395 ‘cfv 6573 No csur 27702 bday cbday 27704 M cmade 27899 O cold 27900 N cnew 27901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 df-new 27906 df-left 27907 df-right 27908 |
This theorem is referenced by: sltonold 28301 |
Copyright terms: Public domain | W3C validator |