Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > newbday | Structured version Visualization version GIF version |
Description: A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
newbday | ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madebday 34007 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | |
2 | oldbday 34008 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | |
3 | 2 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (¬ 𝑋 ∈ ( O ‘𝐴) ↔ ¬ ( bday ‘𝑋) ∈ 𝐴)) |
4 | 1, 3 | anbi12d 630 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → ((𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)) ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
5 | newval 33966 | . . . . . 6 ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))) |
7 | 6 | eleq2d 2824 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ 𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)))) |
8 | eldif 3893 | . . . 4 ⊢ (𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴))) | |
9 | 7, 8 | bitrdi 286 | . . 3 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))) |
11 | bdayelon 33898 | . . . . 5 ⊢ ( bday ‘𝑋) ∈ On | |
12 | 11 | onordi 6356 | . . . 4 ⊢ Ord ( bday ‘𝑋) |
13 | eloni 6261 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
14 | ordtri4 6288 | . . . 4 ⊢ ((Ord ( bday ‘𝑋) ∧ Ord 𝐴) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) | |
15 | 12, 13, 14 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ On → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
16 | 15 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) = 𝐴 ↔ (( bday ‘𝑋) ⊆ 𝐴 ∧ ¬ ( bday ‘𝑋) ∈ 𝐴))) |
17 | 4, 10, 16 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 Ord word 6250 Oncon0 6251 ‘cfv 6418 No csur 33770 bday cbday 33772 M cmade 33953 O cold 33954 N cnew 33955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 df-new 33960 df-left 33961 df-right 33962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |