Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  newbday Structured version   Visualization version   GIF version

Theorem newbday 34009
Description: A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
newbday ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday 𝑋) = 𝐴))

Proof of Theorem newbday
StepHypRef Expression
1 madebday 34007 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday 𝑋) ⊆ 𝐴))
2 oldbday 34008 . . . 4 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday 𝑋) ∈ 𝐴))
32notbid 317 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → (¬ 𝑋 ∈ ( O ‘𝐴) ↔ ¬ ( bday 𝑋) ∈ 𝐴))
41, 3anbi12d 630 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → ((𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)) ↔ (( bday 𝑋) ⊆ 𝐴 ∧ ¬ ( bday 𝑋) ∈ 𝐴)))
5 newval 33966 . . . . . 6 ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴))
65a1i 11 . . . . 5 (𝐴 ∈ On → ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)))
76eleq2d 2824 . . . 4 (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ 𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴))))
8 eldif 3893 . . . 4 (𝑋 ∈ (( M ‘𝐴) ∖ ( O ‘𝐴)) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴)))
97, 8bitrdi 286 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴))))
109adantr 480 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( N ‘𝐴) ↔ (𝑋 ∈ ( M ‘𝐴) ∧ ¬ 𝑋 ∈ ( O ‘𝐴))))
11 bdayelon 33898 . . . . 5 ( bday 𝑋) ∈ On
1211onordi 6356 . . . 4 Ord ( bday 𝑋)
13 eloni 6261 . . . 4 (𝐴 ∈ On → Ord 𝐴)
14 ordtri4 6288 . . . 4 ((Ord ( bday 𝑋) ∧ Ord 𝐴) → (( bday 𝑋) = 𝐴 ↔ (( bday 𝑋) ⊆ 𝐴 ∧ ¬ ( bday 𝑋) ∈ 𝐴)))
1512, 13, 14sylancr 586 . . 3 (𝐴 ∈ On → (( bday 𝑋) = 𝐴 ↔ (( bday 𝑋) ⊆ 𝐴 ∧ ¬ ( bday 𝑋) ∈ 𝐴)))
1615adantr 480 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (( bday 𝑋) = 𝐴 ↔ (( bday 𝑋) ⊆ 𝐴 ∧ ¬ ( bday 𝑋) ∈ 𝐴)))
174, 10, 163bitr4d 310 1 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday 𝑋) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883  Ord word 6250  Oncon0 6251  cfv 6418   No csur 33770   bday cbday 33772   M cmade 33953   O cold 33954   N cnew 33955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-new 33960  df-left 33961  df-right 33962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator