| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9429. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem1 | ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.7 | . . 3 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 2 | ordtypelem.8 | . . 3 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 3 | iftrue 4482 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) |
| 5 | ordtypelem.6 | . . 3 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.2 | . . . 4 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 7 | ordtypelem.3 | . . . 4 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 8 | ordtypelem.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 9 | 6, 7, 8 | dfoi 9408 | . . 3 ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
| 10 | 5, 9 | eqtri 2756 | . 2 ⊢ 𝑂 = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
| 11 | ordtypelem.5 | . . 3 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 12 | 11 | reseq2i 5932 | . 2 ⊢ (𝐹 ↾ 𝑇) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}) |
| 13 | 4, 10, 12 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 ∅c0 4282 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 Se wse 5572 We wwe 5573 ran crn 5622 ↾ cres 5623 “ cima 5624 Oncon0 6314 ℩crio 7311 recscrecs 8299 OrdIsocoi 9406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fv 6497 df-riota 7312 df-ov 7358 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-oi 9407 |
| This theorem is referenced by: ordtypelem4 9418 ordtypelem6 9420 ordtypelem7 9421 ordtypelem9 9423 |
| Copyright terms: Public domain | W3C validator |