![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtypelem1 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9601. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem1 | ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.7 | . . 3 ⊢ (𝜑 → 𝑅 We 𝐴) | |
2 | ordtypelem.8 | . . 3 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
3 | iftrue 4554 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) |
5 | ordtypelem.6 | . . 3 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.2 | . . . 4 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
7 | ordtypelem.3 | . . . 4 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
8 | ordtypelem.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
9 | 6, 7, 8 | dfoi 9580 | . . 3 ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
10 | 5, 9 | eqtri 2768 | . 2 ⊢ 𝑂 = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
11 | ordtypelem.5 | . . 3 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
12 | 11 | reseq2i 6006 | . 2 ⊢ (𝐹 ↾ 𝑇) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}) |
13 | 4, 10, 12 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∅c0 4352 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 Se wse 5650 We wwe 5651 ran crn 5701 ↾ cres 5702 “ cima 5703 Oncon0 6395 ℩crio 7403 recscrecs 8426 OrdIsocoi 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-riota 7404 df-ov 7451 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-oi 9579 |
This theorem is referenced by: ordtypelem4 9590 ordtypelem6 9592 ordtypelem7 9593 ordtypelem9 9595 |
Copyright terms: Public domain | W3C validator |