![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtypelem1 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9569. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem1 | ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.7 | . . 3 ⊢ (𝜑 → 𝑅 We 𝐴) | |
2 | ordtypelem.8 | . . 3 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
3 | iftrue 4536 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡})) |
5 | ordtypelem.6 | . . 3 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.2 | . . . 4 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
7 | ordtypelem.3 | . . . 4 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
8 | ordtypelem.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
9 | 6, 7, 8 | dfoi 9548 | . . 3 ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
10 | 5, 9 | eqtri 2762 | . 2 ⊢ 𝑂 = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) |
11 | ordtypelem.5 | . . 3 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
12 | 11 | reseq2i 5996 | . 2 ⊢ (𝐹 ↾ 𝑇) = (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}) |
13 | 4, 10, 12 | 3eqtr4g 2799 | 1 ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∀wral 3058 ∃wrex 3067 {crab 3432 Vcvv 3477 ∅c0 4338 ifcif 4530 class class class wbr 5147 ↦ cmpt 5230 Se wse 5638 We wwe 5639 ran crn 5689 ↾ cres 5690 “ cima 5691 Oncon0 6385 ℩crio 7386 recscrecs 8408 OrdIsocoi 9546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5694 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fv 6570 df-riota 7387 df-ov 7433 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-oi 9547 |
This theorem is referenced by: ordtypelem4 9558 ordtypelem6 9560 ordtypelem7 9561 ordtypelem9 9563 |
Copyright terms: Public domain | W3C validator |