MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem6 Structured version   Visualization version   GIF version

Theorem ordtypelem6 9260
Description: Lemma for ordtype 9269. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem6 ((𝜑𝑀 ∈ dom 𝑂) → (𝑁𝑀 → (𝑂𝑁)𝑅(𝑂𝑀)))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑗,𝑁,𝑢,𝑤   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑁(𝑥,𝑧,𝑣,𝑡,)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6771 . . . . 5 (𝑎 = 𝑁 → (𝐹𝑎) = (𝐹𝑁))
21breq1d 5089 . . . 4 (𝑎 = 𝑁 → ((𝐹𝑎)𝑅(𝐹𝑀) ↔ (𝐹𝑁)𝑅(𝐹𝑀)))
3 ssrab2 4018 . . . . . . . 8 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}
4 simpr 485 . . . . . . . . . 10 ((𝜑𝑀 ∈ dom 𝑂) → 𝑀 ∈ dom 𝑂)
5 ordtypelem.1 . . . . . . . . . . . . 13 𝐹 = recs(𝐺)
6 ordtypelem.2 . . . . . . . . . . . . 13 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
7 ordtypelem.3 . . . . . . . . . . . . 13 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
8 ordtypelem.5 . . . . . . . . . . . . 13 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
9 ordtypelem.6 . . . . . . . . . . . . 13 𝑂 = OrdIso(𝑅, 𝐴)
10 ordtypelem.7 . . . . . . . . . . . . 13 (𝜑𝑅 We 𝐴)
11 ordtypelem.8 . . . . . . . . . . . . 13 (𝜑𝑅 Se 𝐴)
125, 6, 7, 8, 9, 10, 11ordtypelem4 9258 . . . . . . . . . . . 12 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1312fdmd 6609 . . . . . . . . . . 11 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
1413adantr 481 . . . . . . . . . 10 ((𝜑𝑀 ∈ dom 𝑂) → dom 𝑂 = (𝑇 ∩ dom 𝐹))
154, 14eleqtrd 2843 . . . . . . . . 9 ((𝜑𝑀 ∈ dom 𝑂) → 𝑀 ∈ (𝑇 ∩ dom 𝐹))
165, 6, 7, 8, 9, 10, 11ordtypelem3 9257 . . . . . . . . 9 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
1715, 16syldan 591 . . . . . . . 8 ((𝜑𝑀 ∈ dom 𝑂) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
183, 17sselid 3924 . . . . . . 7 ((𝜑𝑀 ∈ dom 𝑂) → (𝐹𝑀) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
19 breq2 5083 . . . . . . . . . 10 (𝑤 = (𝐹𝑀) → (𝑗𝑅𝑤𝑗𝑅(𝐹𝑀)))
2019ralbidv 3123 . . . . . . . . 9 (𝑤 = (𝐹𝑀) → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀)))
2120elrab 3626 . . . . . . . 8 ((𝐹𝑀) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ↔ ((𝐹𝑀) ∈ 𝐴 ∧ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀)))
2221simprbi 497 . . . . . . 7 ((𝐹𝑀) ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} → ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀))
2318, 22syl 17 . . . . . 6 ((𝜑𝑀 ∈ dom 𝑂) → ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀))
245tfr1a 8216 . . . . . . . . 9 (Fun 𝐹 ∧ Lim dom 𝐹)
2524simpli 484 . . . . . . . 8 Fun 𝐹
26 funfn 6462 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
2725, 26mpbi 229 . . . . . . 7 𝐹 Fn dom 𝐹
2824simpri 486 . . . . . . . . 9 Lim dom 𝐹
29 limord 6324 . . . . . . . . 9 (Lim dom 𝐹 → Ord dom 𝐹)
3028, 29ax-mp 5 . . . . . . . 8 Ord dom 𝐹
31 inss2 4169 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹
3213, 31eqsstrdi 3980 . . . . . . . . 9 (𝜑 → dom 𝑂 ⊆ dom 𝐹)
3332sselda 3926 . . . . . . . 8 ((𝜑𝑀 ∈ dom 𝑂) → 𝑀 ∈ dom 𝐹)
34 ordelss 6281 . . . . . . . 8 ((Ord dom 𝐹𝑀 ∈ dom 𝐹) → 𝑀 ⊆ dom 𝐹)
3530, 33, 34sylancr 587 . . . . . . 7 ((𝜑𝑀 ∈ dom 𝑂) → 𝑀 ⊆ dom 𝐹)
36 breq1 5082 . . . . . . . 8 (𝑗 = (𝐹𝑎) → (𝑗𝑅(𝐹𝑀) ↔ (𝐹𝑎)𝑅(𝐹𝑀)))
3736ralima 7111 . . . . . . 7 ((𝐹 Fn dom 𝐹𝑀 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀) ↔ ∀𝑎𝑀 (𝐹𝑎)𝑅(𝐹𝑀)))
3827, 35, 37sylancr 587 . . . . . 6 ((𝜑𝑀 ∈ dom 𝑂) → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅(𝐹𝑀) ↔ ∀𝑎𝑀 (𝐹𝑎)𝑅(𝐹𝑀)))
3923, 38mpbid 231 . . . . 5 ((𝜑𝑀 ∈ dom 𝑂) → ∀𝑎𝑀 (𝐹𝑎)𝑅(𝐹𝑀))
4039adantrr 714 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → ∀𝑎𝑀 (𝐹𝑎)𝑅(𝐹𝑀))
41 simprr 770 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → 𝑁𝑀)
422, 40, 41rspcdva 3563 . . 3 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝐹𝑁)𝑅(𝐹𝑀))
435, 6, 7, 8, 9, 10, 11ordtypelem1 9255 . . . . . 6 (𝜑𝑂 = (𝐹𝑇))
4443adantr 481 . . . . 5 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → 𝑂 = (𝐹𝑇))
4544fveq1d 6773 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝑂𝑁) = ((𝐹𝑇)‘𝑁))
465, 6, 7, 8, 9, 10, 11ordtypelem2 9256 . . . . . . 7 (𝜑 → Ord 𝑇)
47 inss1 4168 . . . . . . . . . 10 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
4813, 47eqsstrdi 3980 . . . . . . . . 9 (𝜑 → dom 𝑂𝑇)
4948sselda 3926 . . . . . . . 8 ((𝜑𝑀 ∈ dom 𝑂) → 𝑀𝑇)
5049adantrr 714 . . . . . . 7 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → 𝑀𝑇)
51 ordelss 6281 . . . . . . 7 ((Ord 𝑇𝑀𝑇) → 𝑀𝑇)
5246, 50, 51syl2an2r 682 . . . . . 6 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → 𝑀𝑇)
5352, 41sseldd 3927 . . . . 5 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → 𝑁𝑇)
5453fvresd 6791 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → ((𝐹𝑇)‘𝑁) = (𝐹𝑁))
5545, 54eqtrd 2780 . . 3 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝑂𝑁) = (𝐹𝑁))
5644fveq1d 6773 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝑂𝑀) = ((𝐹𝑇)‘𝑀))
5750fvresd 6791 . . . 4 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → ((𝐹𝑇)‘𝑀) = (𝐹𝑀))
5856, 57eqtrd 2780 . . 3 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝑂𝑀) = (𝐹𝑀))
5942, 55, 583brtr4d 5111 . 2 ((𝜑 ∧ (𝑀 ∈ dom 𝑂𝑁𝑀)) → (𝑂𝑁)𝑅(𝑂𝑀))
6059expr 457 1 ((𝜑𝑀 ∈ dom 𝑂) → (𝑁𝑀 → (𝑂𝑁)𝑅(𝑂𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  cin 3891  wss 3892   class class class wbr 5079  cmpt 5162   Se wse 5543   We wwe 5544  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Ord word 6264  Oncon0 6265  Lim wlim 6266  Fun wfun 6426   Fn wfn 6427  cfv 6432  crio 7227  recscrecs 8192  OrdIsocoi 9246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-oi 9247
This theorem is referenced by:  ordtypelem8  9262
  Copyright terms: Public domain W3C validator