Step | Hyp | Ref
| Expression |
1 | | ordtypelem.1 |
. . 3
⊢ 𝐹 = recs(𝐺) |
2 | | ordtypelem.2 |
. . 3
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
3 | | ordtypelem.3 |
. . 3
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
4 | | ordtypelem.5 |
. . 3
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
5 | | ordtypelem.6 |
. . 3
⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
6 | | ordtypelem.7 |
. . 3
⊢ (𝜑 → 𝑅 We 𝐴) |
7 | | ordtypelem.8 |
. . 3
⊢ (𝜑 → 𝑅 Se 𝐴) |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem8 9284 |
. 2
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
9 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9280 |
. . . . 5
⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
10 | 9 | frnd 6608 |
. . . 4
⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
11 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9278 |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑇) |
12 | | ordirr 6284 |
. . . . . . . . . . 11
⊢ (Ord
𝑇 → ¬ 𝑇 ∈ 𝑇) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑇 ∈ 𝑇) |
14 | 1 | tfr1a 8225 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 ∧ Lim dom 𝐹) |
15 | 14 | simpri 486 |
. . . . . . . . . . . . 13
⊢ Lim dom
𝐹 |
16 | | limord 6325 |
. . . . . . . . . . . . 13
⊢ (Lim dom
𝐹 → Ord dom 𝐹) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Ord dom
𝐹 |
18 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem1 9277 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
19 | | ordtypelem9.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
20 | 19 | elexd 3452 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ∈ V) |
21 | 18, 20 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ 𝑇) ∈ V) |
22 | 1 | tfr2b 8227 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝑇) ∈ V)) |
23 | 11, 22 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝑇) ∈ V)) |
24 | 21, 23 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ dom 𝐹) |
25 | | ordelon 6290 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝐹 ∧ 𝑇 ∈ dom 𝐹) → 𝑇 ∈ On) |
26 | 17, 24, 25 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ On) |
27 | | imaeq2 5965 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑇 → (𝐹 “ 𝑎) = (𝐹 “ 𝑇)) |
28 | 27 | raleqdv 3348 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
29 | 28 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑇 → (∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
30 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑐 → (𝑧𝑅𝑡 ↔ 𝑐𝑅𝑡)) |
31 | 30 | cbvralvw 3383 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
(𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑡) |
32 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑏 → (𝑐𝑅𝑡 ↔ 𝑐𝑅𝑏)) |
33 | 32 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑏)) |
34 | 31, 33 | bitrid 282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑏)) |
35 | 34 | cbvrexvw 3384 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑡 ∈
𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑏) |
36 | | imaeq2 5965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝐹 “ 𝑥) = (𝐹 “ 𝑎)) |
37 | 36 | raleqdv 3348 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏)) |
38 | 37 | rexbidv 3226 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑥)𝑐𝑅𝑏 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏)) |
39 | 35, 38 | bitrid 282 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏)) |
40 | 39 | cbvrabv 3426 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏} |
41 | 4, 40 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 𝑇 = {𝑎 ∈ On ∣ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑎)𝑐𝑅𝑏} |
42 | 29, 41 | elrab2 3627 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ 𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
43 | 42 | baib 536 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ On → (𝑇 ∈ 𝑇 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
44 | 26, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∈ 𝑇 ↔ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
45 | 13, 44 | mtbid 324 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏) |
46 | | ralnex 3167 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
𝐴 ¬ ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏 ∈ 𝐴 ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏) |
47 | 45, 46 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑏 ∈ 𝐴 ¬ ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏) |
48 | 47 | r19.21bi 3134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → ¬ ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏) |
49 | 18 | rneqd 5847 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑂 = ran (𝐹 ↾ 𝑇)) |
50 | | df-ima 5602 |
. . . . . . . . . . 11
⊢ (𝐹 “ 𝑇) = ran (𝐹 ↾ 𝑇) |
51 | 49, 50 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑂 = (𝐹 “ 𝑇)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → ran 𝑂 = (𝐹 “ 𝑇)) |
53 | 52 | raleqdv 3348 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏)) |
54 | 9 | ffund 6604 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝑂) |
55 | 54 | funfnd 6465 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 Fn dom 𝑂) |
56 | 55 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑂 Fn dom 𝑂) |
57 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑂‘𝑚) → (𝑐𝑅𝑏 ↔ (𝑂‘𝑚)𝑅𝑏)) |
58 | 57 | ralrn 6964 |
. . . . . . . . 9
⊢ (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
59 | 56, 58 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
60 | 53, 59 | bitr3d 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∀𝑐 ∈ (𝐹 “ 𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏)) |
61 | 48, 60 | mtbid 324 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
62 | | rexnal 3169 |
. . . . . 6
⊢
(∃𝑚 ∈ dom
𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂‘𝑚)𝑅𝑏) |
63 | 61, 62 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂‘𝑚)𝑅𝑏) |
64 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem7 9283 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂‘𝑚)𝑅𝑏 ∨ 𝑏 ∈ ran 𝑂)) |
65 | 64 | ord 861 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
66 | 65 | rexlimdva 3213 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂‘𝑚)𝑅𝑏 → 𝑏 ∈ ran 𝑂)) |
67 | 63, 66 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ ran 𝑂) |
68 | 10, 67 | eqelssd 3942 |
. . 3
⊢ (𝜑 → ran 𝑂 = 𝐴) |
69 | | isoeq5 7192 |
. . 3
⊢ (ran
𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
70 | 68, 69 | syl 17 |
. 2
⊢ (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))) |
71 | 8, 70 | mpbid 231 |
1
⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) |