MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Visualization version   GIF version

Theorem ordtypelem9 9407
Description: Lemma for ordtype 9413. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9411 implies that either ran 𝑂𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
ordtypelem9.1 (𝜑𝑂𝑉)
Assertion
Ref Expression
ordtypelem9 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)

Proof of Theorem ordtypelem9
Dummy variables 𝑎 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9406 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9402 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6654 . . . 4 (𝜑 → ran 𝑂𝐴)
111, 2, 3, 4, 5, 6, 7ordtypelem2 9400 . . . . . . . . . . 11 (𝜑 → Ord 𝑇)
12 ordirr 6319 . . . . . . . . . . 11 (Ord 𝑇 → ¬ 𝑇𝑇)
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑇𝑇)
141tfr1a 8308 . . . . . . . . . . . . . 14 (Fun 𝐹 ∧ Lim dom 𝐹)
1514simpri 485 . . . . . . . . . . . . 13 Lim dom 𝐹
16 limord 6362 . . . . . . . . . . . . 13 (Lim dom 𝐹 → Ord dom 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . 12 Ord dom 𝐹
181, 2, 3, 4, 5, 6, 7ordtypelem1 9399 . . . . . . . . . . . . . 14 (𝜑𝑂 = (𝐹𝑇))
19 ordtypelem9.1 . . . . . . . . . . . . . . 15 (𝜑𝑂𝑉)
2019elexd 3460 . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ V)
2118, 20eqeltrrd 2832 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑇) ∈ V)
221tfr2b 8310 . . . . . . . . . . . . . 14 (Ord 𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2311, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2421, 23mpbird 257 . . . . . . . . . . . 12 (𝜑𝑇 ∈ dom 𝐹)
25 ordelon 6325 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑇 ∈ dom 𝐹) → 𝑇 ∈ On)
2617, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑𝑇 ∈ On)
27 imaeq2 6000 . . . . . . . . . . . . . . 15 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹𝑇))
2827raleqdv 3292 . . . . . . . . . . . . . 14 (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
2928rexbidv 3156 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
30 breq1 5089 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑐 → (𝑧𝑅𝑡𝑐𝑅𝑡))
3130cbvralvw 3210 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡)
32 breq2 5090 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑐𝑅𝑡𝑐𝑅𝑏))
3332ralbidv 3155 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3431, 33bitrid 283 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3534cbvrexvw 3211 . . . . . . . . . . . . . . . 16 (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏)
36 imaeq2 6000 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3736raleqdv 3292 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3837rexbidv 3156 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3935, 38bitrid 283 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
4039cbvrabv 3405 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
414, 40eqtri 2754 . . . . . . . . . . . . 13 𝑇 = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
4229, 41elrab2 3645 . . . . . . . . . . . 12 (𝑇𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4342baib 535 . . . . . . . . . . 11 (𝑇 ∈ On → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4426, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4513, 44mtbid 324 . . . . . . . . 9 (𝜑 → ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
46 ralnex 3058 . . . . . . . . 9 (∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4745, 46sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4847r19.21bi 3224 . . . . . . 7 ((𝜑𝑏𝐴) → ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4918rneqd 5873 . . . . . . . . . . 11 (𝜑 → ran 𝑂 = ran (𝐹𝑇))
50 df-ima 5624 . . . . . . . . . . 11 (𝐹𝑇) = ran (𝐹𝑇)
5149, 50eqtr4di 2784 . . . . . . . . . 10 (𝜑 → ran 𝑂 = (𝐹𝑇))
5251adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐴) → ran 𝑂 = (𝐹𝑇))
5352raleqdv 3292 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
549ffund 6650 . . . . . . . . . . 11 (𝜑 → Fun 𝑂)
5554funfnd 6507 . . . . . . . . . 10 (𝜑𝑂 Fn dom 𝑂)
5655adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐴) → 𝑂 Fn dom 𝑂)
57 breq1 5089 . . . . . . . . . 10 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
5857ralrn 7016 . . . . . . . . 9 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
5956, 58syl 17 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6053, 59bitr3d 281 . . . . . . 7 ((𝜑𝑏𝐴) → (∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6148, 60mtbid 324 . . . . . 6 ((𝜑𝑏𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
62 rexnal 3084 . . . . . 6 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
6361, 62sylibr 234 . . . . 5 ((𝜑𝑏𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏)
641, 2, 3, 4, 5, 6, 7ordtypelem7 9405 . . . . . . 7 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6564ord 864 . . . . . 6 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6665rexlimdva 3133 . . . . 5 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6763, 66mpd 15 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
6810, 67eqelssd 3951 . . 3 (𝜑 → ran 𝑂 = 𝐴)
69 isoeq5 7250 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
7068, 69syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
718, 70mpbid 232 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3896   class class class wbr 5086  cmpt 5167   E cep 5510   Se wse 5562   We wwe 5563  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  Ord word 6300  Oncon0 6301  Lim wlim 6302  Fun wfun 6470   Fn wfn 6471  cfv 6476   Isom wiso 6477  crio 7297  recscrecs 8285  OrdIsocoi 9390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-oi 9391
This theorem is referenced by:  ordtypelem10  9408  ordtype2  9415
  Copyright terms: Public domain W3C validator