MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Visualization version   GIF version

Theorem ordtypelem9 9455
Description: Lemma for ordtype 9461. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9459 implies that either ran 𝑂𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
ordtypelem9.1 (𝜑𝑂𝑉)
Assertion
Ref Expression
ordtypelem9 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)

Proof of Theorem ordtypelem9
Dummy variables 𝑎 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9454 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9450 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6678 . . . 4 (𝜑 → ran 𝑂𝐴)
111, 2, 3, 4, 5, 6, 7ordtypelem2 9448 . . . . . . . . . . 11 (𝜑 → Ord 𝑇)
12 ordirr 6338 . . . . . . . . . . 11 (Ord 𝑇 → ¬ 𝑇𝑇)
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑇𝑇)
141tfr1a 8339 . . . . . . . . . . . . . 14 (Fun 𝐹 ∧ Lim dom 𝐹)
1514simpri 485 . . . . . . . . . . . . 13 Lim dom 𝐹
16 limord 6381 . . . . . . . . . . . . 13 (Lim dom 𝐹 → Ord dom 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . 12 Ord dom 𝐹
181, 2, 3, 4, 5, 6, 7ordtypelem1 9447 . . . . . . . . . . . . . 14 (𝜑𝑂 = (𝐹𝑇))
19 ordtypelem9.1 . . . . . . . . . . . . . . 15 (𝜑𝑂𝑉)
2019elexd 3468 . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ V)
2118, 20eqeltrrd 2829 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑇) ∈ V)
221tfr2b 8341 . . . . . . . . . . . . . 14 (Ord 𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2311, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2421, 23mpbird 257 . . . . . . . . . . . 12 (𝜑𝑇 ∈ dom 𝐹)
25 ordelon 6344 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑇 ∈ dom 𝐹) → 𝑇 ∈ On)
2617, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑𝑇 ∈ On)
27 imaeq2 6016 . . . . . . . . . . . . . . 15 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹𝑇))
2827raleqdv 3296 . . . . . . . . . . . . . 14 (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
2928rexbidv 3157 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
30 breq1 5105 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑐 → (𝑧𝑅𝑡𝑐𝑅𝑡))
3130cbvralvw 3213 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡)
32 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑐𝑅𝑡𝑐𝑅𝑏))
3332ralbidv 3156 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3431, 33bitrid 283 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3534cbvrexvw 3214 . . . . . . . . . . . . . . . 16 (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏)
36 imaeq2 6016 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3736raleqdv 3296 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3837rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3935, 38bitrid 283 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
4039cbvrabv 3413 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
414, 40eqtri 2752 . . . . . . . . . . . . 13 𝑇 = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
4229, 41elrab2 3659 . . . . . . . . . . . 12 (𝑇𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4342baib 535 . . . . . . . . . . 11 (𝑇 ∈ On → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4426, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4513, 44mtbid 324 . . . . . . . . 9 (𝜑 → ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
46 ralnex 3055 . . . . . . . . 9 (∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4745, 46sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4847r19.21bi 3227 . . . . . . 7 ((𝜑𝑏𝐴) → ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4918rneqd 5891 . . . . . . . . . . 11 (𝜑 → ran 𝑂 = ran (𝐹𝑇))
50 df-ima 5644 . . . . . . . . . . 11 (𝐹𝑇) = ran (𝐹𝑇)
5149, 50eqtr4di 2782 . . . . . . . . . 10 (𝜑 → ran 𝑂 = (𝐹𝑇))
5251adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐴) → ran 𝑂 = (𝐹𝑇))
5352raleqdv 3296 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
549ffund 6674 . . . . . . . . . . 11 (𝜑 → Fun 𝑂)
5554funfnd 6531 . . . . . . . . . 10 (𝜑𝑂 Fn dom 𝑂)
5655adantr 480 . . . . . . . . 9 ((𝜑𝑏𝐴) → 𝑂 Fn dom 𝑂)
57 breq1 5105 . . . . . . . . . 10 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
5857ralrn 7042 . . . . . . . . 9 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
5956, 58syl 17 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6053, 59bitr3d 281 . . . . . . 7 ((𝜑𝑏𝐴) → (∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6148, 60mtbid 324 . . . . . 6 ((𝜑𝑏𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
62 rexnal 3082 . . . . . 6 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
6361, 62sylibr 234 . . . . 5 ((𝜑𝑏𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏)
641, 2, 3, 4, 5, 6, 7ordtypelem7 9453 . . . . . . 7 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6564ord 864 . . . . . 6 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6665rexlimdva 3134 . . . . 5 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6763, 66mpd 15 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
6810, 67eqelssd 3965 . . 3 (𝜑 → ran 𝑂 = 𝐴)
69 isoeq5 7278 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
7068, 69syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
718, 70mpbid 232 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cin 3910   class class class wbr 5102  cmpt 5183   E cep 5530   Se wse 5582   We wwe 5583  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Ord word 6319  Oncon0 6320  Lim wlim 6321  Fun wfun 6493   Fn wfn 6494  cfv 6499   Isom wiso 6500  crio 7325  recscrecs 8316  OrdIsocoi 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-oi 9439
This theorem is referenced by:  ordtypelem10  9456  ordtype2  9463
  Copyright terms: Public domain W3C validator