MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Visualization version   GIF version

Theorem ordtypelem9 9285
Description: Lemma for ordtype 9291. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9289 implies that either ran 𝑂𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
ordtypelem9.1 (𝜑𝑂𝑉)
Assertion
Ref Expression
ordtypelem9 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)

Proof of Theorem ordtypelem9
Dummy variables 𝑎 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9284 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9280 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6608 . . . 4 (𝜑 → ran 𝑂𝐴)
111, 2, 3, 4, 5, 6, 7ordtypelem2 9278 . . . . . . . . . . 11 (𝜑 → Ord 𝑇)
12 ordirr 6284 . . . . . . . . . . 11 (Ord 𝑇 → ¬ 𝑇𝑇)
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑇𝑇)
141tfr1a 8225 . . . . . . . . . . . . . 14 (Fun 𝐹 ∧ Lim dom 𝐹)
1514simpri 486 . . . . . . . . . . . . 13 Lim dom 𝐹
16 limord 6325 . . . . . . . . . . . . 13 (Lim dom 𝐹 → Ord dom 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . 12 Ord dom 𝐹
181, 2, 3, 4, 5, 6, 7ordtypelem1 9277 . . . . . . . . . . . . . 14 (𝜑𝑂 = (𝐹𝑇))
19 ordtypelem9.1 . . . . . . . . . . . . . . 15 (𝜑𝑂𝑉)
2019elexd 3452 . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ V)
2118, 20eqeltrrd 2840 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑇) ∈ V)
221tfr2b 8227 . . . . . . . . . . . . . 14 (Ord 𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2311, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2421, 23mpbird 256 . . . . . . . . . . . 12 (𝜑𝑇 ∈ dom 𝐹)
25 ordelon 6290 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑇 ∈ dom 𝐹) → 𝑇 ∈ On)
2617, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑𝑇 ∈ On)
27 imaeq2 5965 . . . . . . . . . . . . . . 15 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹𝑇))
2827raleqdv 3348 . . . . . . . . . . . . . 14 (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
2928rexbidv 3226 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
30 breq1 5077 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑐 → (𝑧𝑅𝑡𝑐𝑅𝑡))
3130cbvralvw 3383 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡)
32 breq2 5078 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑐𝑅𝑡𝑐𝑅𝑏))
3332ralbidv 3112 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3431, 33bitrid 282 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3534cbvrexvw 3384 . . . . . . . . . . . . . . . 16 (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏)
36 imaeq2 5965 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3736raleqdv 3348 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3837rexbidv 3226 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3935, 38bitrid 282 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
4039cbvrabv 3426 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
414, 40eqtri 2766 . . . . . . . . . . . . 13 𝑇 = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
4229, 41elrab2 3627 . . . . . . . . . . . 12 (𝑇𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4342baib 536 . . . . . . . . . . 11 (𝑇 ∈ On → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4426, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4513, 44mtbid 324 . . . . . . . . 9 (𝜑 → ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
46 ralnex 3167 . . . . . . . . 9 (∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4745, 46sylibr 233 . . . . . . . 8 (𝜑 → ∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4847r19.21bi 3134 . . . . . . 7 ((𝜑𝑏𝐴) → ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4918rneqd 5847 . . . . . . . . . . 11 (𝜑 → ran 𝑂 = ran (𝐹𝑇))
50 df-ima 5602 . . . . . . . . . . 11 (𝐹𝑇) = ran (𝐹𝑇)
5149, 50eqtr4di 2796 . . . . . . . . . 10 (𝜑 → ran 𝑂 = (𝐹𝑇))
5251adantr 481 . . . . . . . . 9 ((𝜑𝑏𝐴) → ran 𝑂 = (𝐹𝑇))
5352raleqdv 3348 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
549ffund 6604 . . . . . . . . . . 11 (𝜑 → Fun 𝑂)
5554funfnd 6465 . . . . . . . . . 10 (𝜑𝑂 Fn dom 𝑂)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑏𝐴) → 𝑂 Fn dom 𝑂)
57 breq1 5077 . . . . . . . . . 10 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
5857ralrn 6964 . . . . . . . . 9 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
5956, 58syl 17 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6053, 59bitr3d 280 . . . . . . 7 ((𝜑𝑏𝐴) → (∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6148, 60mtbid 324 . . . . . 6 ((𝜑𝑏𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
62 rexnal 3169 . . . . . 6 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
6361, 62sylibr 233 . . . . 5 ((𝜑𝑏𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏)
641, 2, 3, 4, 5, 6, 7ordtypelem7 9283 . . . . . . 7 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6564ord 861 . . . . . 6 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6665rexlimdva 3213 . . . . 5 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6763, 66mpd 15 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
6810, 67eqelssd 3942 . . 3 (𝜑 → ran 𝑂 = 𝐴)
69 isoeq5 7192 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
7068, 69syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
718, 70mpbid 231 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886   class class class wbr 5074  cmpt 5157   E cep 5494   Se wse 5542   We wwe 5543  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Ord word 6265  Oncon0 6266  Lim wlim 6267  Fun wfun 6427   Fn wfn 6428  cfv 6433   Isom wiso 6434  crio 7231  recscrecs 8201  OrdIsocoi 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-oi 9269
This theorem is referenced by:  ordtypelem10  9286  ordtype2  9293
  Copyright terms: Public domain W3C validator