MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Visualization version   GIF version

Theorem ordtypelem9 9517
Description: Lemma for ordtype 9523. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9521 implies that either ran 𝑂𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
ordtypelem9.1 (𝜑𝑂𝑉)
Assertion
Ref Expression
ordtypelem9 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)

Proof of Theorem ordtypelem9
Dummy variables 𝑎 𝑏 𝑐 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3 𝐹 = recs(𝐺)
2 ordtypelem.2 . . 3 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . 3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . 3 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . 3 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . 3 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . 3 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem8 9516 . 2 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
91, 2, 3, 4, 5, 6, 7ordtypelem4 9512 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
109frnd 6722 . . . 4 (𝜑 → ran 𝑂𝐴)
111, 2, 3, 4, 5, 6, 7ordtypelem2 9510 . . . . . . . . . . 11 (𝜑 → Ord 𝑇)
12 ordirr 6379 . . . . . . . . . . 11 (Ord 𝑇 → ¬ 𝑇𝑇)
1311, 12syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑇𝑇)
141tfr1a 8390 . . . . . . . . . . . . . 14 (Fun 𝐹 ∧ Lim dom 𝐹)
1514simpri 486 . . . . . . . . . . . . 13 Lim dom 𝐹
16 limord 6421 . . . . . . . . . . . . 13 (Lim dom 𝐹 → Ord dom 𝐹)
1715, 16ax-mp 5 . . . . . . . . . . . 12 Ord dom 𝐹
181, 2, 3, 4, 5, 6, 7ordtypelem1 9509 . . . . . . . . . . . . . 14 (𝜑𝑂 = (𝐹𝑇))
19 ordtypelem9.1 . . . . . . . . . . . . . . 15 (𝜑𝑂𝑉)
2019elexd 3494 . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ V)
2118, 20eqeltrrd 2834 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑇) ∈ V)
221tfr2b 8392 . . . . . . . . . . . . . 14 (Ord 𝑇 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2311, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ dom 𝐹 ↔ (𝐹𝑇) ∈ V))
2421, 23mpbird 256 . . . . . . . . . . . 12 (𝜑𝑇 ∈ dom 𝐹)
25 ordelon 6385 . . . . . . . . . . . 12 ((Ord dom 𝐹𝑇 ∈ dom 𝐹) → 𝑇 ∈ On)
2617, 24, 25sylancr 587 . . . . . . . . . . 11 (𝜑𝑇 ∈ On)
27 imaeq2 6053 . . . . . . . . . . . . . . 15 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹𝑇))
2827raleqdv 3325 . . . . . . . . . . . . . 14 (𝑎 = 𝑇 → (∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
2928rexbidv 3178 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
30 breq1 5150 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑐 → (𝑧𝑅𝑡𝑐𝑅𝑡))
3130cbvralvw 3234 . . . . . . . . . . . . . . . . . 18 (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡)
32 breq2 5151 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → (𝑐𝑅𝑡𝑐𝑅𝑏))
3332ralbidv 3177 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑏 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3431, 33bitrid 282 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏))
3534cbvrexvw 3235 . . . . . . . . . . . . . . . 16 (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏)
36 imaeq2 6053 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
3736raleqdv 3325 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (∀𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3837rexbidv 3178 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (∃𝑏𝐴𝑐 ∈ (𝐹𝑥)𝑐𝑅𝑏 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
3935, 38bitrid 282 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏))
4039cbvrabv 3442 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡} = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
414, 40eqtri 2760 . . . . . . . . . . . . 13 𝑇 = {𝑎 ∈ On ∣ ∃𝑏𝐴𝑐 ∈ (𝐹𝑎)𝑐𝑅𝑏}
4229, 41elrab2 3685 . . . . . . . . . . . 12 (𝑇𝑇 ↔ (𝑇 ∈ On ∧ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4342baib 536 . . . . . . . . . . 11 (𝑇 ∈ On → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4426, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝑇𝑇 ↔ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
4513, 44mtbid 323 . . . . . . . . 9 (𝜑 → ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
46 ralnex 3072 . . . . . . . . 9 (∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ¬ ∃𝑏𝐴𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4745, 46sylibr 233 . . . . . . . 8 (𝜑 → ∀𝑏𝐴 ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4847r19.21bi 3248 . . . . . . 7 ((𝜑𝑏𝐴) → ¬ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏)
4918rneqd 5935 . . . . . . . . . . 11 (𝜑 → ran 𝑂 = ran (𝐹𝑇))
50 df-ima 5688 . . . . . . . . . . 11 (𝐹𝑇) = ran (𝐹𝑇)
5149, 50eqtr4di 2790 . . . . . . . . . 10 (𝜑 → ran 𝑂 = (𝐹𝑇))
5251adantr 481 . . . . . . . . 9 ((𝜑𝑏𝐴) → ran 𝑂 = (𝐹𝑇))
5352raleqdv 3325 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏))
549ffund 6718 . . . . . . . . . . 11 (𝜑 → Fun 𝑂)
5554funfnd 6576 . . . . . . . . . 10 (𝜑𝑂 Fn dom 𝑂)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑏𝐴) → 𝑂 Fn dom 𝑂)
57 breq1 5150 . . . . . . . . . 10 (𝑐 = (𝑂𝑚) → (𝑐𝑅𝑏 ↔ (𝑂𝑚)𝑅𝑏))
5857ralrn 7086 . . . . . . . . 9 (𝑂 Fn dom 𝑂 → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
5956, 58syl 17 . . . . . . . 8 ((𝜑𝑏𝐴) → (∀𝑐 ∈ ran 𝑂 𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6053, 59bitr3d 280 . . . . . . 7 ((𝜑𝑏𝐴) → (∀𝑐 ∈ (𝐹𝑇)𝑐𝑅𝑏 ↔ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏))
6148, 60mtbid 323 . . . . . 6 ((𝜑𝑏𝐴) → ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
62 rexnal 3100 . . . . . 6 (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏 ↔ ¬ ∀𝑚 ∈ dom 𝑂(𝑂𝑚)𝑅𝑏)
6361, 62sylibr 233 . . . . 5 ((𝜑𝑏𝐴) → ∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏)
641, 2, 3, 4, 5, 6, 7ordtypelem7 9515 . . . . . . 7 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → ((𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6564ord 862 . . . . . 6 (((𝜑𝑏𝐴) ∧ 𝑚 ∈ dom 𝑂) → (¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6665rexlimdva 3155 . . . . 5 ((𝜑𝑏𝐴) → (∃𝑚 ∈ dom 𝑂 ¬ (𝑂𝑚)𝑅𝑏𝑏 ∈ ran 𝑂))
6763, 66mpd 15 . . . 4 ((𝜑𝑏𝐴) → 𝑏 ∈ ran 𝑂)
6810, 67eqelssd 4002 . . 3 (𝜑 → ran 𝑂 = 𝐴)
69 isoeq5 7314 . . 3 (ran 𝑂 = 𝐴 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
7068, 69syl 17 . 2 (𝜑 → (𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂) ↔ 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)))
718, 70mpbid 231 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  cin 3946   class class class wbr 5147  cmpt 5230   E cep 5578   Se wse 5628   We wwe 5629  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  Ord word 6360  Oncon0 6361  Lim wlim 6362  Fun wfun 6534   Fn wfn 6535  cfv 6540   Isom wiso 6541  crio 7360  recscrecs 8366  OrdIsocoi 9500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-oi 9501
This theorem is referenced by:  ordtypelem10  9518  ordtype2  9525
  Copyright terms: Public domain W3C validator