MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem4 Structured version   Visualization version   GIF version

Theorem ordtypelem4 9416
Description: Lemma for ordtype 9427. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem4 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . . . 8 𝐹 = recs(𝐺)
21tfr1a 8321 . . . . . . 7 (Fun 𝐹 ∧ Lim dom 𝐹)
32simpli 483 . . . . . 6 Fun 𝐹
4 funres 6530 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝑇))
53, 4mp1i 13 . . . . 5 (𝜑 → Fun (𝐹𝑇))
65funfnd 6519 . . . 4 (𝜑 → (𝐹𝑇) Fn dom (𝐹𝑇))
7 dmres 5967 . . . . 5 dom (𝐹𝑇) = (𝑇 ∩ dom 𝐹)
87fneq2i 6586 . . . 4 ((𝐹𝑇) Fn dom (𝐹𝑇) ↔ (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
96, 8sylib 218 . . 3 (𝜑 → (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
10 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
1110elin1d 4153 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎𝑇)
1211fvresd 6850 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
13 ssrab2 4029 . . . . . . 7 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤}
14 ssrab2 4029 . . . . . . 7 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ⊆ 𝐴
1513, 14sstri 3940 . . . . . 6 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ 𝐴
16 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
17 ordtypelem.3 . . . . . . 7 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
18 ordtypelem.5 . . . . . . 7 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
19 ordtypelem.6 . . . . . . 7 𝑂 = OrdIso(𝑅, 𝐴)
20 ordtypelem.7 . . . . . . 7 (𝜑𝑅 We 𝐴)
21 ordtypelem.8 . . . . . . 7 (𝜑𝑅 Se 𝐴)
221, 16, 17, 18, 19, 20, 21ordtypelem3 9415 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
2315, 22sselid 3928 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ 𝐴)
2412, 23eqeltrd 2833 . . . 4 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) ∈ 𝐴)
2524ralrimiva 3125 . . 3 (𝜑 → ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴)
26 ffnfv 7060 . . 3 ((𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ ((𝐹𝑇) Fn (𝑇 ∩ dom 𝐹) ∧ ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴))
279, 25, 26sylanbrc 583 . 2 (𝜑 → (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴)
281, 16, 17, 18, 19, 20, 21ordtypelem1 9413 . . 3 (𝜑𝑂 = (𝐹𝑇))
2928feq1d 6640 . 2 (𝜑 → (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴))
3027, 29mpbird 257 1 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897   class class class wbr 5095  cmpt 5176   Se wse 5572   We wwe 5573  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Oncon0 6313  Lim wlim 6314  Fun wfun 6482   Fn wfn 6483  wf 6484  cfv 6488  crio 7310  recscrecs 8298  OrdIsocoi 9404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-oi 9405
This theorem is referenced by:  ordtypelem5  9417  ordtypelem6  9418  ordtypelem7  9419  ordtypelem8  9420  ordtypelem9  9421  ordtypelem10  9422
  Copyright terms: Public domain W3C validator