MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem4 Structured version   Visualization version   GIF version

Theorem ordtypelem4 9432
Description: Lemma for ordtype 9443. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem4 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . . . 8 𝐹 = recs(𝐺)
21tfr1a 8323 . . . . . . 7 (Fun 𝐹 ∧ Lim dom 𝐹)
32simpli 483 . . . . . 6 Fun 𝐹
4 funres 6528 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝑇))
53, 4mp1i 13 . . . . 5 (𝜑 → Fun (𝐹𝑇))
65funfnd 6517 . . . 4 (𝜑 → (𝐹𝑇) Fn dom (𝐹𝑇))
7 dmres 5967 . . . . 5 dom (𝐹𝑇) = (𝑇 ∩ dom 𝐹)
87fneq2i 6584 . . . 4 ((𝐹𝑇) Fn dom (𝐹𝑇) ↔ (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
96, 8sylib 218 . . 3 (𝜑 → (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
10 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
1110elin1d 4157 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎𝑇)
1211fvresd 6846 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
13 ssrab2 4033 . . . . . . 7 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤}
14 ssrab2 4033 . . . . . . 7 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ⊆ 𝐴
1513, 14sstri 3947 . . . . . 6 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ 𝐴
16 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
17 ordtypelem.3 . . . . . . 7 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
18 ordtypelem.5 . . . . . . 7 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
19 ordtypelem.6 . . . . . . 7 𝑂 = OrdIso(𝑅, 𝐴)
20 ordtypelem.7 . . . . . . 7 (𝜑𝑅 We 𝐴)
21 ordtypelem.8 . . . . . . 7 (𝜑𝑅 Se 𝐴)
221, 16, 17, 18, 19, 20, 21ordtypelem3 9431 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
2315, 22sselid 3935 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ 𝐴)
2412, 23eqeltrd 2828 . . . 4 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) ∈ 𝐴)
2524ralrimiva 3121 . . 3 (𝜑 → ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴)
26 ffnfv 7057 . . 3 ((𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ ((𝐹𝑇) Fn (𝑇 ∩ dom 𝐹) ∧ ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴))
279, 25, 26sylanbrc 583 . 2 (𝜑 → (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴)
281, 16, 17, 18, 19, 20, 21ordtypelem1 9429 . . 3 (𝜑𝑂 = (𝐹𝑇))
2928feq1d 6638 . 2 (𝜑 → (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴))
3027, 29mpbird 257 1 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cin 3904   class class class wbr 5095  cmpt 5176   Se wse 5574   We wwe 5575  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Oncon0 6311  Lim wlim 6312  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  crio 7309  recscrecs 8300  OrdIsocoi 9420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-oi 9421
This theorem is referenced by:  ordtypelem5  9433  ordtypelem6  9434  ordtypelem7  9435  ordtypelem8  9436  ordtypelem9  9437  ordtypelem10  9438
  Copyright terms: Public domain W3C validator