| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9492. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem4 | ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . . . . 8 ⊢ 𝐹 = recs(𝐺) | |
| 2 | 1 | tfr1a 8365 | . . . . . . 7 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| 3 | 2 | simpli 483 | . . . . . 6 ⊢ Fun 𝐹 |
| 4 | funres 6561 | . . . . . 6 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝑇)) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun (𝐹 ↾ 𝑇)) |
| 6 | 5 | funfnd 6550 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝑇) Fn dom (𝐹 ↾ 𝑇)) |
| 7 | dmres 5986 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑇) = (𝑇 ∩ dom 𝐹) | |
| 8 | 7 | fneq2i 6619 | . . . 4 ⊢ ((𝐹 ↾ 𝑇) Fn dom (𝐹 ↾ 𝑇) ↔ (𝐹 ↾ 𝑇) Fn (𝑇 ∩ dom 𝐹)) |
| 9 | 6, 8 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑇) Fn (𝑇 ∩ dom 𝐹)) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹)) | |
| 11 | 10 | elin1d 4170 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎 ∈ 𝑇) |
| 12 | 11 | fvresd 6881 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹 ↾ 𝑇)‘𝑎) = (𝐹‘𝑎)) |
| 13 | ssrab2 4046 | . . . . . . 7 ⊢ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} | |
| 14 | ssrab2 4046 | . . . . . . 7 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ⊆ 𝐴 | |
| 15 | 13, 14 | sstri 3959 | . . . . . 6 ⊢ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ 𝐴 |
| 16 | ordtypelem.2 | . . . . . . 7 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 17 | ordtypelem.3 | . . . . . . 7 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 18 | ordtypelem.5 | . . . . . . 7 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 19 | ordtypelem.6 | . . . . . . 7 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 20 | ordtypelem.7 | . . . . . . 7 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 21 | ordtypelem.8 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 22 | 1, 16, 17, 18, 19, 20, 21 | ordtypelem3 9480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑎) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
| 23 | 15, 22 | sselid 3947 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑎) ∈ 𝐴) |
| 24 | 12, 23 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹 ↾ 𝑇)‘𝑎) ∈ 𝐴) |
| 25 | 24 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹 ↾ 𝑇)‘𝑎) ∈ 𝐴) |
| 26 | ffnfv 7094 | . . 3 ⊢ ((𝐹 ↾ 𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ ((𝐹 ↾ 𝑇) Fn (𝑇 ∩ dom 𝐹) ∧ ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹 ↾ 𝑇)‘𝑎) ∈ 𝐴)) | |
| 27 | 9, 25, 26 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 28 | 1, 16, 17, 18, 19, 20, 21 | ordtypelem1 9478 | . . 3 ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
| 29 | 28 | feq1d 6673 | . 2 ⊢ (𝜑 → (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ (𝐹 ↾ 𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴)) |
| 30 | 27, 29 | mpbird 257 | 1 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 ∩ cin 3916 class class class wbr 5110 ↦ cmpt 5191 Se wse 5592 We wwe 5593 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 Oncon0 6335 Lim wlim 6336 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ℩crio 7346 recscrecs 8342 OrdIsocoi 9469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-oi 9470 |
| This theorem is referenced by: ordtypelem5 9482 ordtypelem6 9483 ordtypelem7 9484 ordtypelem8 9485 ordtypelem9 9486 ordtypelem10 9487 |
| Copyright terms: Public domain | W3C validator |