MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem4 Structured version   Visualization version   GIF version

Theorem ordtypelem4 9561
Description: Lemma for ordtype 9572. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem4 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . . . 8 𝐹 = recs(𝐺)
21tfr1a 8434 . . . . . . 7 (Fun 𝐹 ∧ Lim dom 𝐹)
32simpli 483 . . . . . 6 Fun 𝐹
4 funres 6608 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝑇))
53, 4mp1i 13 . . . . 5 (𝜑 → Fun (𝐹𝑇))
65funfnd 6597 . . . 4 (𝜑 → (𝐹𝑇) Fn dom (𝐹𝑇))
7 dmres 6030 . . . . 5 dom (𝐹𝑇) = (𝑇 ∩ dom 𝐹)
87fneq2i 6666 . . . 4 ((𝐹𝑇) Fn dom (𝐹𝑇) ↔ (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
96, 8sylib 218 . . 3 (𝜑 → (𝐹𝑇) Fn (𝑇 ∩ dom 𝐹))
10 simpr 484 . . . . . . 7 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎 ∈ (𝑇 ∩ dom 𝐹))
1110elin1d 4204 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → 𝑎𝑇)
1211fvresd 6926 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) = (𝐹𝑎))
13 ssrab2 4080 . . . . . . 7 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤}
14 ssrab2 4080 . . . . . . 7 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ⊆ 𝐴
1513, 14sstri 3993 . . . . . 6 {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ 𝐴
16 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
17 ordtypelem.3 . . . . . . 7 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
18 ordtypelem.5 . . . . . . 7 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
19 ordtypelem.6 . . . . . . 7 𝑂 = OrdIso(𝑅, 𝐴)
20 ordtypelem.7 . . . . . . 7 (𝜑𝑅 We 𝐴)
21 ordtypelem.8 . . . . . . 7 (𝜑𝑅 Se 𝐴)
221, 16, 17, 18, 19, 20, 21ordtypelem3 9560 . . . . . 6 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑎)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
2315, 22sselid 3981 . . . . 5 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑎) ∈ 𝐴)
2412, 23eqeltrd 2841 . . . 4 ((𝜑𝑎 ∈ (𝑇 ∩ dom 𝐹)) → ((𝐹𝑇)‘𝑎) ∈ 𝐴)
2524ralrimiva 3146 . . 3 (𝜑 → ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴)
26 ffnfv 7139 . . 3 ((𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ ((𝐹𝑇) Fn (𝑇 ∩ dom 𝐹) ∧ ∀𝑎 ∈ (𝑇 ∩ dom 𝐹)((𝐹𝑇)‘𝑎) ∈ 𝐴))
279, 25, 26sylanbrc 583 . 2 (𝜑 → (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴)
281, 16, 17, 18, 19, 20, 21ordtypelem1 9558 . . 3 (𝜑𝑂 = (𝐹𝑇))
2928feq1d 6720 . 2 (𝜑 → (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 ↔ (𝐹𝑇):(𝑇 ∩ dom 𝐹)⟶𝐴))
3027, 29mpbird 257 1 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cin 3950   class class class wbr 5143  cmpt 5225   Se wse 5635   We wwe 5636  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Oncon0 6384  Lim wlim 6385  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  crio 7387  recscrecs 8410  OrdIsocoi 9549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-oi 9550
This theorem is referenced by:  ordtypelem5  9562  ordtypelem6  9563  ordtypelem7  9564  ordtypelem8  9565  ordtypelem9  9566  ordtypelem10  9567
  Copyright terms: Public domain W3C validator