MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypecbv Structured version   Visualization version   GIF version

Theorem ordtypecbv 9555
Description: Lemma for ordtype 9570. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
Assertion
Ref Expression
ordtypecbv recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Distinct variable groups:   𝑓,𝑟,𝑠,𝑢,𝑣,𝐶   ,𝑗,𝑢,𝑣,𝑤,𝑓,𝑖,𝑦,𝑅,𝑟,𝑠   𝐴,,𝑗,𝑟,𝑠,𝑢,𝑣,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐶(𝑦,𝑤,,𝑖,𝑗)   𝐹(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)   𝐺(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)

Proof of Theorem ordtypecbv
StepHypRef Expression
1 ordtypelem.1 . 2 𝐹 = recs(𝐺)
2 ordtypelem.3 . . . 4 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
3 breq1 5151 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑢𝑅𝑣𝑟𝑅𝑣))
43notbid 318 . . . . . . . . 9 (𝑢 = 𝑟 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑟𝑅𝑣))
54cbvralvw 3235 . . . . . . . 8 (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑣)
6 breq2 5152 . . . . . . . . . 10 (𝑣 = 𝑠 → (𝑟𝑅𝑣𝑟𝑅𝑠))
76notbid 318 . . . . . . . . 9 (𝑣 = 𝑠 → (¬ 𝑟𝑅𝑣 ↔ ¬ 𝑟𝑅𝑠))
87ralbidv 3176 . . . . . . . 8 (𝑣 = 𝑠 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
95, 8bitrid 283 . . . . . . 7 (𝑣 = 𝑠 → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
109cbvriotavw 7398 . . . . . 6 (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠)
11 ordtypelem.2 . . . . . . . . 9 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
12 breq1 5151 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑗𝑅𝑤𝑖𝑅𝑤))
1312cbvralvw 3235 . . . . . . . . . . 11 (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑤)
14 breq2 5152 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑖𝑅𝑤𝑖𝑅𝑦))
1514ralbidv 3176 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∀𝑖 ∈ ran 𝑖𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1613, 15bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1716cbvrabv 3444 . . . . . . . . 9 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
1811, 17eqtri 2763 . . . . . . . 8 𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
19 rneq 5950 . . . . . . . . . 10 ( = 𝑓 → ran = ran 𝑓)
2019raleqdv 3324 . . . . . . . . 9 ( = 𝑓 → (∀𝑖 ∈ ran 𝑖𝑅𝑦 ↔ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦))
2120rabbidv 3441 . . . . . . . 8 ( = 𝑓 → {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2218, 21eqtrid 2787 . . . . . . 7 ( = 𝑓𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2322raleqdv 3324 . . . . . . 7 ( = 𝑓 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑠 ↔ ∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2422, 23riotaeqbidv 7391 . . . . . 6 ( = 𝑓 → (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2510, 24eqtrid 2787 . . . . 5 ( = 𝑓 → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2625cbvmptv 5261 . . . 4 ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣)) = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
272, 26eqtri 2763 . . 3 𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
28 recseq 8413 . . 3 (𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) → recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))))
2927, 28ax-mp 5 . 2 recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)))
301, 29eqtr2i 2764 1 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wral 3059  {crab 3433  Vcvv 3478   class class class wbr 5148  cmpt 5231  ran crn 5690  crio 7387  recscrecs 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-riota 7388  df-ov 7434  df-frecs 8305  df-wrecs 8336  df-recs 8410
This theorem is referenced by:  oicl  9567  oif  9568  oiiso2  9569  ordtype  9570  oiiniseg  9571  ordtype2  9572
  Copyright terms: Public domain W3C validator