Proof of Theorem ordtypecbv
Step | Hyp | Ref
| Expression |
1 | | ordtypelem.1 |
. 2
⊢ 𝐹 = recs(𝐺) |
2 | | ordtypelem.3 |
. . . 4
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
3 | | breq1 5056 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑟 → (𝑢𝑅𝑣 ↔ 𝑟𝑅𝑣)) |
4 | 3 | notbid 321 |
. . . . . . . . 9
⊢ (𝑢 = 𝑟 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑟𝑅𝑣)) |
5 | 4 | cbvralvw 3358 |
. . . . . . . 8
⊢
(∀𝑢 ∈
𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑣) |
6 | | breq2 5057 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑠 → (𝑟𝑅𝑣 ↔ 𝑟𝑅𝑠)) |
7 | 6 | notbid 321 |
. . . . . . . . 9
⊢ (𝑣 = 𝑠 → (¬ 𝑟𝑅𝑣 ↔ ¬ 𝑟𝑅𝑠)) |
8 | 7 | ralbidv 3118 |
. . . . . . . 8
⊢ (𝑣 = 𝑠 → (∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑣 ↔ ∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑠)) |
9 | 5, 8 | syl5bb 286 |
. . . . . . 7
⊢ (𝑣 = 𝑠 → (∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑠)) |
10 | 9 | cbvriotavw 7180 |
. . . . . 6
⊢
(℩𝑣
∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣) = (℩𝑠 ∈ 𝐶 ∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑠) |
11 | | ordtypelem.2 |
. . . . . . . . 9
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
12 | | breq1 5056 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑗𝑅𝑤 ↔ 𝑖𝑅𝑤)) |
13 | 12 | cbvralvw 3358 |
. . . . . . . . . . 11
⊢
(∀𝑗 ∈
ran ℎ 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑤) |
14 | | breq2 5057 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑖𝑅𝑤 ↔ 𝑖𝑅𝑦)) |
15 | 14 | ralbidv 3118 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (∀𝑖 ∈ ran ℎ 𝑖𝑅𝑤 ↔ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦)) |
16 | 13, 15 | syl5bb 286 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦)) |
17 | 16 | cbvrabv 3402 |
. . . . . . . . 9
⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} = {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦} |
18 | 11, 17 | eqtri 2765 |
. . . . . . . 8
⊢ 𝐶 = {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦} |
19 | | rneq 5805 |
. . . . . . . . . 10
⊢ (ℎ = 𝑓 → ran ℎ = ran 𝑓) |
20 | 19 | raleqdv 3325 |
. . . . . . . . 9
⊢ (ℎ = 𝑓 → (∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦 ↔ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦)) |
21 | 20 | rabbidv 3390 |
. . . . . . . 8
⊢ (ℎ = 𝑓 → {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran ℎ 𝑖𝑅𝑦} = {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}) |
22 | 18, 21 | eqtrid 2789 |
. . . . . . 7
⊢ (ℎ = 𝑓 → 𝐶 = {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}) |
23 | 22 | raleqdv 3325 |
. . . . . . 7
⊢ (ℎ = 𝑓 → (∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑠 ↔ ∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) |
24 | 22, 23 | riotaeqbidv 7173 |
. . . . . 6
⊢ (ℎ = 𝑓 → (℩𝑠 ∈ 𝐶 ∀𝑟 ∈ 𝐶 ¬ 𝑟𝑅𝑠) = (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) |
25 | 10, 24 | eqtrid 2789 |
. . . . 5
⊢ (ℎ = 𝑓 → (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣) = (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) |
26 | 25 | cbvmptv 5158 |
. . . 4
⊢ (ℎ ∈ V ↦
(℩𝑣 ∈
𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) = (𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) |
27 | 2, 26 | eqtri 2765 |
. . 3
⊢ 𝐺 = (𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) |
28 | | recseq 8110 |
. . 3
⊢ (𝐺 = (𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) → recs(𝐺) = recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)))) |
29 | 27, 28 | ax-mp 5 |
. 2
⊢
recs(𝐺) =
recs((𝑓 ∈ V ↦
(℩𝑠 ∈
{𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) |
30 | 1, 29 | eqtr2i 2766 |
1
⊢
recs((𝑓 ∈ V
↦ (℩𝑠
∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 |