MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypecbv Structured version   Visualization version   GIF version

Theorem ordtypecbv 8981
Description: Lemma for ordtype 8996. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
Assertion
Ref Expression
ordtypecbv recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Distinct variable groups:   𝑓,𝑟,𝑠,𝑢,𝑣,𝐶   ,𝑗,𝑢,𝑣,𝑤,𝑓,𝑖,𝑦,𝑅,𝑟,𝑠   𝐴,,𝑗,𝑟,𝑠,𝑢,𝑣,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐶(𝑦,𝑤,,𝑖,𝑗)   𝐹(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)   𝐺(𝑦,𝑤,𝑣,𝑢,𝑓,,𝑖,𝑗,𝑠,𝑟)

Proof of Theorem ordtypecbv
StepHypRef Expression
1 ordtypelem.1 . 2 𝐹 = recs(𝐺)
2 ordtypelem.3 . . . 4 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
3 breq1 5069 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑢𝑅𝑣𝑟𝑅𝑣))
43notbid 320 . . . . . . . . 9 (𝑢 = 𝑟 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑟𝑅𝑣))
54cbvralvw 3449 . . . . . . . 8 (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑣)
6 breq2 5070 . . . . . . . . . 10 (𝑣 = 𝑠 → (𝑟𝑅𝑣𝑟𝑅𝑠))
76notbid 320 . . . . . . . . 9 (𝑣 = 𝑠 → (¬ 𝑟𝑅𝑣 ↔ ¬ 𝑟𝑅𝑠))
87ralbidv 3197 . . . . . . . 8 (𝑣 = 𝑠 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
95, 8syl5bb 285 . . . . . . 7 (𝑣 = 𝑠 → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑟𝐶 ¬ 𝑟𝑅𝑠))
109cbvriotavw 7124 . . . . . 6 (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠)
11 ordtypelem.2 . . . . . . . . 9 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
12 breq1 5069 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑗𝑅𝑤𝑖𝑅𝑤))
1312cbvralvw 3449 . . . . . . . . . . 11 (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑤)
14 breq2 5070 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑖𝑅𝑤𝑖𝑅𝑦))
1514ralbidv 3197 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∀𝑖 ∈ ran 𝑖𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1613, 15syl5bb 285 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑖 ∈ ran 𝑖𝑅𝑦))
1716cbvrabv 3491 . . . . . . . . 9 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
1811, 17eqtri 2844 . . . . . . . 8 𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦}
19 rneq 5806 . . . . . . . . . 10 ( = 𝑓 → ran = ran 𝑓)
2019raleqdv 3415 . . . . . . . . 9 ( = 𝑓 → (∀𝑖 ∈ ran 𝑖𝑅𝑦 ↔ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦))
2120rabbidv 3480 . . . . . . . 8 ( = 𝑓 → {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑖𝑅𝑦} = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2218, 21syl5eq 2868 . . . . . . 7 ( = 𝑓𝐶 = {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦})
2322raleqdv 3415 . . . . . . 7 ( = 𝑓 → (∀𝑟𝐶 ¬ 𝑟𝑅𝑠 ↔ ∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2422, 23riotaeqbidv 7117 . . . . . 6 ( = 𝑓 → (𝑠𝐶𝑟𝐶 ¬ 𝑟𝑅𝑠) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2510, 24syl5eq 2868 . . . . 5 ( = 𝑓 → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
2625cbvmptv 5169 . . . 4 ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣)) = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
272, 26eqtri 2844 . . 3 𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))
28 recseq 8010 . . 3 (𝐺 = (𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)) → recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))))
2927, 28ax-mp 5 . 2 recs(𝐺) = recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠)))
301, 29eqtr2i 2845 1 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wral 3138  {crab 3142  Vcvv 3494   class class class wbr 5066  cmpt 5146  ran crn 5556  crio 7113  recscrecs 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fv 6363  df-riota 7114  df-wrecs 7947  df-recs 8008
This theorem is referenced by:  oicl  8993  oif  8994  oiiso2  8995  ordtype  8996  oiiniseg  8997  ordtype2  8998
  Copyright terms: Public domain W3C validator