Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orduni | Structured version Visualization version GIF version |
Description: The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.) |
Ref | Expression |
---|---|
orduni | ⊢ (Ord 𝐴 → Ord ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson 7653 | . 2 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
2 | ssorduni 7649 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → Ord ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3889 ∪ cuni 4841 Ord word 6269 Oncon0 6270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-11 2149 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-tr 5195 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6273 df-on 6274 |
This theorem is referenced by: ordsucuniel 7691 orduniorsuc 7697 cantnflem1 9475 rankxplim3 9667 ordcmp 34664 |
Copyright terms: Public domain | W3C validator |