MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduni Structured version   Visualization version   GIF version

Theorem orduni 7659
Description: The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
orduni (Ord 𝐴 → Ord 𝐴)

Proof of Theorem orduni
StepHypRef Expression
1 ordsson 7653 . 2 (Ord 𝐴𝐴 ⊆ On)
2 ssorduni 7649 . 2 (𝐴 ⊆ On → Ord 𝐴)
31, 2syl 17 1 (Ord 𝐴 → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3889   cuni 4841  Ord word 6269  Oncon0 6270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-11 2149  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-tr 5195  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-ord 6273  df-on 6274
This theorem is referenced by:  ordsucuniel  7691  orduniorsuc  7697  cantnflem1  9475  rankxplim3  9667  ordcmp  34664
  Copyright terms: Public domain W3C validator