MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuni Structured version   Visualization version   GIF version

Theorem onuni 7808
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni (𝐴 ∈ On → 𝐴 ∈ On)

Proof of Theorem onuni
StepHypRef Expression
1 onss 7805 . 2 (𝐴 ∈ On → 𝐴 ⊆ On)
2 ssonuni 7800 . 2 (𝐴 ∈ On → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2mpd 15 1 (𝐴 ∈ On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3951   cuni 4907  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388
This theorem is referenced by:  onuninsuci  7861  oeeulem  8639  cnfcom3lem  9743  rankxpsuc  9922  dfac12lem2  10185  ttukeylem3  10551  r1limwun  10776  ontgval  36432  ordtoplem  36436  ordcmp  36448  1oequni2o  37369  rdgsucuni  37370  aomclem1  43066  omlimcl2  43254  onsucf1lem  43282  onsucf1olem  43283  onov0suclim  43287  dflim5  43342
  Copyright terms: Public domain W3C validator