| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onuni | Structured version Visualization version GIF version | ||
| Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onss 7725 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 2 | ssonuni 7720 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpd 15 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onuninsuci 7780 oeeulem 8526 cnfcom3lem 9618 rankxpsuc 9797 dfac12lem2 10058 ttukeylem3 10424 r1limwun 10649 ontgval 36404 ordtoplem 36408 ordcmp 36420 1oequni2o 37341 rdgsucuni 37342 aomclem1 43027 omlimcl2 43215 onsucf1lem 43242 onsucf1olem 43243 onov0suclim 43247 dflim5 43302 |
| Copyright terms: Public domain | W3C validator |