![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onuni | Structured version Visualization version GIF version |
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onss 7820 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
2 | ssonuni 7815 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
3 | 1, 2 | mpd 15 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: onuninsuci 7877 oeeulem 8657 cnfcom3lem 9772 rankxpsuc 9951 dfac12lem2 10214 ttukeylem3 10580 r1limwun 10805 ontgval 36397 ordtoplem 36401 ordcmp 36413 1oequni2o 37334 rdgsucuni 37335 aomclem1 43011 omlimcl2 43203 onsucf1lem 43231 onsucf1olem 43232 onov0suclim 43236 dflim5 43291 |
Copyright terms: Public domain | W3C validator |