| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onuni | Structured version Visualization version GIF version | ||
| Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onss 7718 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 2 | ssonuni 7713 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpd 15 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: onuninsuci 7770 oeeulem 8516 cnfcom3lem 9593 rankxpsuc 9772 dfac12lem2 10033 ttukeylem3 10399 r1limwun 10624 ontgval 36464 ordtoplem 36468 ordcmp 36480 1oequni2o 37401 rdgsucuni 37402 aomclem1 43086 omlimcl2 43274 onsucf1lem 43301 onsucf1olem 43302 onov0suclim 43306 dflim5 43361 |
| Copyright terms: Public domain | W3C validator |