MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuni Structured version   Visualization version   GIF version

Theorem onuni 7782
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni (𝐴 ∈ On → 𝐴 ∈ On)

Proof of Theorem onuni
StepHypRef Expression
1 onss 7779 . 2 (𝐴 ∈ On → 𝐴 ⊆ On)
2 ssonuni 7774 . 2 (𝐴 ∈ On → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2mpd 15 1 (𝐴 ∈ On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926   cuni 4883  Oncon0 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356
This theorem is referenced by:  onuninsuci  7835  oeeulem  8613  cnfcom3lem  9717  rankxpsuc  9896  dfac12lem2  10159  ttukeylem3  10525  r1limwun  10750  ontgval  36449  ordtoplem  36453  ordcmp  36465  1oequni2o  37386  rdgsucuni  37387  aomclem1  43078  omlimcl2  43266  onsucf1lem  43293  onsucf1olem  43294  onov0suclim  43298  dflim5  43353
  Copyright terms: Public domain W3C validator