| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onuni | Structured version Visualization version GIF version | ||
| Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onss 7724 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 2 | ssonuni 7719 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpd 15 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4858 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onuninsuci 7776 oeeulem 8522 cnfcom3lem 9600 rankxpsuc 9782 dfac12lem2 10043 ttukeylem3 10409 r1limwun 10634 ontgval 36496 ordtoplem 36500 ordcmp 36512 1oequni2o 37433 rdgsucuni 37434 aomclem1 43171 omlimcl2 43359 onsucf1lem 43386 onsucf1olem 43387 onov0suclim 43391 dflim5 43446 |
| Copyright terms: Public domain | W3C validator |