MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuni Structured version   Visualization version   GIF version

Theorem onuni 7791
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni (𝐴 ∈ On → 𝐴 ∈ On)

Proof of Theorem onuni
StepHypRef Expression
1 onss 7787 . 2 (𝐴 ∈ On → 𝐴 ⊆ On)
2 ssonuni 7782 . 2 (𝐴 ∈ On → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2mpd 15 1 (𝐴 ∈ On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wss 3947   cuni 4908  Oncon0 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373
This theorem is referenced by:  onuninsuci  7844  oeeulem  8621  cnfcom3lem  9726  rankxpsuc  9905  dfac12lem2  10167  ttukeylem3  10534  r1limwun  10759  ontgval  35915  ordtoplem  35919  ordcmp  35931  1oequni2o  36847  rdgsucuni  36848  aomclem1  42478  omlimcl2  42670  onsucf1lem  42698  onsucf1olem  42699  onov0suclim  42703  dflim5  42758
  Copyright terms: Public domain W3C validator