| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onuni | Structured version Visualization version GIF version | ||
| Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onss 7761 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 2 | ssonuni 7756 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpd 15 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onuninsuci 7816 oeeulem 8565 cnfcom3lem 9656 rankxpsuc 9835 dfac12lem2 10098 ttukeylem3 10464 r1limwun 10689 ontgval 36419 ordtoplem 36423 ordcmp 36435 1oequni2o 37356 rdgsucuni 37357 aomclem1 43043 omlimcl2 43231 onsucf1lem 43258 onsucf1olem 43259 onov0suclim 43263 dflim5 43318 |
| Copyright terms: Public domain | W3C validator |